DECEMBER 1990

VOLUME 5

NUMBERS 18

VINGNANAM JOURNAL OF SCIENCE

THE SCIENCE FACULTY
UNIVERSITY OF JAFFNA

VINGNANAM JOURNAL OF SCIENCE

Editorial Board: G. F. RAJENDRAM (Editor), A. P. ARUDCHANDRAN, K. CHITRAVADIVELU, K. KUNARATNAM, R. MAGESWARAN, V. THARMAR VINAM (Associate Editors).

VINGNANAM - JOURNAL OF SCIENCE is a semi-annual journal devoted to the publication of original research papers and review articles in all fields of science and technology. Authors are entirely responsible for statements and opinions expressed.

The abbreviated title of this journal shall be Vingnanam J. Sci.

SUBSCRIPTIONS:

Annual subscription: Foreign \$ 20.00; Local Rs. 40.00 Single number: Foreign \$ 10.00; Local Rs. 20.00 Subscription includes postage.

Cheques should be drawn in favour of Bursar, University of Jaffna.

MANUSCRIPTS:

Manuscripts and related correspondence should be sent to Prof. G. R. R. ALENDRAM, EDITOR, VINGNANAM—JOURNAL OF SCIENCE, Department of Zvology, University of Jaffan, Thirmchevly, Jaffan, Sri Lanka, Authors are urged to read 'Instructions to Contributors' printed at the end of this issue before preparing the manuscript.

COPYRIGHT

All rights are strictly reserved. No part of this journal may be copied, translated, photographed, broadcast, televised or otherwise disseminated without the prior written permission of the Dean, Faculty of Science, University of Jaffins, Sri Lanks.

PURILISHED RY THE

SCIENCE FACULTY OF THE UNIVERSITY OF JAFFNA

THIRUNELVELY, JAFFNA,

SRI LANKA.

VOLUME 5

NUMBERS 14-2

JOURNAL OF SCIENCE

THE SCIENCE FACULTY UNIVERSITY OF JAFFNA SRI LANKA

VOLUME 5

NUMBERS 1 & 2

VINGNANAM

Volume 5 (Nos. 1 & 2) of Vingnanam has appeared six months

after volume 4. Though a year behind the scheduled time of December 1990, we are now a little more hopeful of matching Vinguauan volume to year eventually.

Two papers deal with local problems in Jaffna peniasula. The paper

two papers ceal with tools proteins a status period by Kalawathy Kanagaratnam and K. Theivendirarajah discribes the characteristics of four local cultivars of bananas: the paper by N. Selvarajah and Vanaja Rajaratnam deals with the limnology of two temporary ponds.

The paper by G. F. Rajendram describes the laboratory rearing of Cyrtorhinus lindipanuis, a biological control agent of the planthopper pest of the rice crop.

K. Kandasamy presents further findings on diffusion of hydrogen in metals in Pd alloy membranes.

We also welcome a review paper from Andrew T. Chamberlain, University of Sheffield, England, on the evidence for human evolution, based on a seminar delivered at the University of Jaffina sometime earlier.

VINGNANAM

JOURNAL OF SCIENCE

Volume 5	December 1990	Numbers 1 & 2

CONTENTS -

Studies on Four Cultivars of Banana in the	e Jaffina Peninsula,	on Lanka.
KALAWATHY KANAGARATNAM	and	
K. THEIVENDIRARAJAH		

Limnology of Two Tempo	rary F	onds in the	Jaima Penninsula,	911	Laura
Limnology of Two Tempe	·-·,	TEAN A TA	DATARATNAM		
N. SELVARAJAH	and	VANAJA	RADITION		

14. 0	DD - 1,14-11-1		
Laboratory	Rearing	of	Cyrtorhinus lividipennis (Hemiptera : Miridae).

14 22

	G. F. KA	JEHDRA	-						
								Mambranes	
Strain	Induced	Diffusion	of	Hydrogen	io	Pd	Alloy	Membranes.	

K. KANDASAMY			

	ruidon	for	Human	Evolution	(A	Review)
Ine	ANORI	ew	T. CHA	MBERLAIN	·	

Instructions to Contributors

ANDREW T. CHAMBERLAIT	

Abstracts in Tamil	 **	•

STUDIES ON FOUR CULTIVARS OF BANANA IN THE JAFFNA PENINSULA, SRI LANKA

KALAWATHY KANAGARATNAM AND K. THEIVENDIRARAJAH (Department of Bolany, University of Jaffina, Jaffina, Sri Lanks)

Vingnanam Journal of Science 5:1 - 6 (1990)

ABSTRACT: Stellen on four collivers of beams -//speec/ Colabally, Gill; (Octobar), Gillippor (Indicates), and referral policy (Edwar) commons/ collisited in the Jallian Pelerauta, of Lanka, Jahmed on significant officence among the collision of Lanka, Jahmed on significant officence among face officence of lanka policy of Lanka (Lanka and Lanka and Lanka and Lanka Variation uses observed in Saugh Lanka and in the partied for the Lanka and Lanka and Lanka and Lanka and Lanka (Impure) Burolis', Their larges in only from the week of the exercision among the collisions but I', mideoling super was much higher in "Gelland" and "Chiesel."

Introduction

The edible banana cultivars of importance in St Lanks are triploids, and belong to AAA, AAB and ABB groups. The important cultivars of cross mitchel and Dwarf cavendish belonging to AAA group; Myore, Silk, Pone and Waths palu belonging to AAB group; Ginamonds 1960. In Sri Lanks bananas are grown in the low country wet zone and in the dry zone including Jaffan genismals in the north its grown under rain feet conditions in most places, but in the Jaffan peninsula it is cultivated under ririsation:

This paper describes the chief cultivar grown in the Mafian positionals, Mysore, Silk, Bluggoe and Watha pain cultivar dominate in Jaffan to Mysore, Silk, Bluggoe and Watha pain cultivariant securities in Jaffan to and Ethani respectively. On the Chief of the Chief

No previous study has been reported on these cultivars and this paper deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant, fruit and biochemical deals with some morphological studies of the plant of the

This project was conducted on well maintained banana cultivars at Urumpiral, Strupiddy and Neervely in the Jaffan peninsula. The chemical status of the soils of the three places are similar, they are of the red latasols. The levels of the soil nutrients during the period of cultivation were within the range of adequacy for bananas. Sword suckers were used as propagales, Plants were spaced 25 m² at a depth of 30 cm. The normal multivation on actics were misinised throughout the study.

Growth parameters

2

Pseudostem height estimated as the distance from the base of the poundostem to the point of interescition of the potioles of the youngest leaves was used as an index of growth. The heights of 50 plants at random for each variety were measured. Pseudostem girth was measured at different levels from the ground. The number of leaves at bunch emergence was counted in 50 plants selected at random for each variety. Time between flower initiation and harvestine was also measured.

Yield parameters

The length of the entire bunch, number of bands/bunch and number of fingers/bunch were measured as an index of yield. Length of the bunch was defined as the distance from the base to the maximum curvature when the bunch was kept straight. The above parameters were measured in 50 bunches selected at random for each cultivaries.

Biochemical analysis

The ripe fruits of the four cultivars were analysed for moisture, mineral/ash, nitrogen, protein, reducing sugar and total sugar content. Pruits with good appearance, free from any disease and almost of the same stage of maturation, were selected for this analysis.

Moisture contents was determined by drying a known weight of the sample at 109°C to a constant weight. A known weight of the died sample was ashed at 480°C to a constant weight to determine the mineraljash content. Percentage of reduncing and totals toager was estimated by the Somogh's semi-micro method (AOAC 1990). The percentage of total nitrogen in 1 g fresh sample was determined by the micro-kjeldahl method (AOAC 1990). The total nitrogen content was multiplied by 6°25 to obtain the total percentage.

Kanagaratnam & Theivendirarajah : Studies en Banana 3 Decamber 1990 Results and Discussion

Cultivar Height of the Girth of final pseudostem at

The results of plant height, girth and number of leaves/plant are given in Table I. The results show that there were no significant differences among the varieties in their height and in the number of leaves/plant. The mean height varied from 3.5 to 3.8 m. Girth size showed some variation, greatest oirth size for Kappal and the least for Sambal mondan. The girth size variation was more significant at 50 cm from the soil.

Table 1. Growth parameters of the four cultivars of banana (Sample size, n=50)

	pseudostem (m) (Mean ± S.E)	differ ground	of leaves at bunch emergence (Mean ± S. E)		
	es congruen	25 cm from the ground	50 cm from the ground	100 cm from the ground	
Kathali	3*68±*06	86:41 ± 2:32	76-08±2-02	63·43±1·66	13±-64
Etharai	3-90±-19	79-20±3-80	71-06±3-24	60·60±2·62	11±-62
Kappai	3:56±:07	87·89±2·50	81·16±2·27	65:38±1:69	13 ± ⋅68
Sampal mondan	3·80+·36	79 03 ±3·84	70 85±3-28	60-62±2-75	15±•73

The results of yield parameters are given in Table 2. It shows that there is variation in length of the bunch, number of combs/bunch, total number of fingers/bunch and in the period of fruit maturation. Sambal mondan matures faster (nearly 24 months) than the others. Etharai takes a longer period (nearly 44 to 5 months) for the fruits to mature

		(Sample size, n	= 50)	
Cultivar	Length of the bunch (cm) (Mean ± S E)	Number of hands/bunch (Mean ± S E)	Number of fingers/bunch (Mean ± S E)	Period of frui maturation in days (Mean ± S E)
Kathali	60·8±2·65	13±-50	241±12-92	100
Etharai	51-15±4-0	8±+42	99± 9:09	140
Kappal	59+03 ±4+63	8±-68	121±14·30	105
Sambai mondan	50-93±3-33	6±·26	82± 5·58	70
		The same training		3.1

Kathali produces larger bunches with more fingers. Among the four cultivars, Kathali is the best with regard to yield and also the fruits mature in reasonably short period of time. The above considerations may have led to the popularity of this cultivar among the growers in the Jaffna peninsula. Moisture and mineral/ash content of the ripe fruits of the varieties

are given in Table 3. The results indicate that the skin has more moisture content than the pulp although the pulp appears soft. The moisture content of the skin showed no significant differences among the varieties. It ranged from 85 - 87%. But the moisture content of the pulp varied among the varieties. Out of the three varieties Kathali, Etharai and Kappal which are commonly consumed as ripe fruits, the pulp of the varieties Etharai and Kappal are relatively dry and hard and this accounts for the lower moisture content as observed in our studies. The skin contains more mineral/ash content than the pulp. The ash content of the pulp ranged from 3-5% while the ash content of the skin ranged from 11-15%. There was no varietal difference

in mineral/ash content of either the skin or the pulp.

pecember 1990 Kanagaratnam & Theivendirarajah: Studies on Banana 5
Table 3 Comparison of moisture and mineral ash content of
the ripe fruits of banana

Sultivar	Moisture %		Dry matter %		content	Mineral/ash content % of fresh weight		Mineral/ash content % of dry weight	
Kathali	skin 84•91	pulp 77-99	skin 15-09	pulp 22-01	skin 1-78	pulp I-15	skin 11:66	pulp 5·22	
Ethari	85-45	71-18	14-55	28-82	2-26	1-11	15:54	3-83	
Kappal	86-91	73:71	13-09	26:29	1-91	1-36	15-34	5.13	
Sambal mondan	85:09	63-88	14-92	36-12	1+60	1-40	10-95	3-7-	

pulp is given in Table 4. The total sugar contest ranged from 1678 to to 28:37%, all officence in the Kappal (28.13%, all other varieties did not proportion of raducing sugar and sucross in the total sugar. However the proportion of raducing sugar and sucross in the pulp showed spelificant variation. In Kathali and Ethari, the proportion of raducing sugar was greater while this was reversed in Kappal. This explains why Kathali and Ethari are greater while the success of the proportion of raducing sugar was greater while the success for the proportion of the propor

Table 4 Reducing sugar and total sugar content of the ripe banana fruits

12016 4	the ripe banana	
Cultivar	Reducing sugar % (fresh weight)	Total sugar % (fresh weight)
Kathali	16-38	21.58
Ethari	17-33	23 04
Kappal	9-67	28-33
Sambal mondan	9-71	20-21

Nitrogen and protein content of the ripe fruits are given in Table 5. The results indicate that the skin and pulp of the fruits had almost equal amounts of protein and also there was no varietal difference. Only Samhal mondan and White mondan are used as vegetables and even there, in the traditional cooking in Jaffray, most of the skin is removed. Therefore, from the point of notrition, it is the pulp that is important in all these varieties, In our study we have only considered the reducing sugar and sucrose in estimation of the total sugars. There may be other dissociated and polysaccharides in finit which will contribute to the net caloric value of the fruit. Further studies on the starch, ascorbic acid and free amino acid content of these cultivars are

in progress.

Table 5. Analysis of nitrogen and protein content of

Cultivar		nitrogen % weight)	Prot (fresh	ein % weight)
	skin	pulp	skin	pulp
Kathali	0.32	0.29	2:01	1.88
Et hari	0-39	0.39	2.45	2-49
Kapal	0-21	0.25	1:31	1-61
Sampal mondan	0.25	0-19	1:575	1-225

The cultivars Kathali and Kappal show greater variability with regard to number of fingers/bunch which is one of the important yield parameter. This may be genetic or due to environmental factors. Further investigation on these cultivars to identify their variability will be useful in selecting better high yielding varieties.

References

Abeygunawardena, D. V. W. (1969) Diseases of cultivated plants. The Colombo Apothecaries' Co. Ltd., Sri Lanka.

AOAC — Association of Official Agricultural Chemists (1950). AOAC — Association of Official Agricultural Chemists (1960). Simmonds, N. W. (1966) Bananas, Lonemans, London,

LIMNOLOGY OF TWO TEMPORARY PONDS IN THE JAFFNA PENINSULA, SRI LANKA

N. SELVARAJAH & VANAJA RAJARATNAMI

(Department of Zoology, University of Jaffina, Jaffina, Sri Lanka.)

Vingnanem — Journal of Science 5: 7 — 13 (1990)

ABSTRACT: A limnologicalistiday was medojel two temporary ponds namely Ariyakulam and Regal ponds in the Jalina peninsula of Sri Lanka. This part experiences continuent months around December and this period is referred to us the trainy posson."

Of the two ponds, Arisablean pool dries up completely during the dry season and the other Regal pool does not dry up, since it is supplied by dealings water throughout the year. The study commenced with initial filling of the pools and concluded when the ponds were dry or nexty so.

During the period of the study almost all the observed organisms, the phytopiastics rouch as members of chlorophysess and zooplankton including creatizes and protezes were found in both ponds, while considerable differences were observed in the row ponds regarding the chemical factors such as nitrogen, oxygen, salinity and pil which were higher in Regal Pend probably due to the accumulation of disniage water in this pand.

Introduction

Edible fresh water fish are an asset and a potential source for supplementing the protein shortage in our country. The successful inland management depends basically upon limnological aspects of water bodies.

In recent years the cultivation of fresh water fishes for food has been speading throughout the country. Most work on limnoley has been carried out in various water bodies of this penissals to analyse the abundance of cetain zooplankton (Fernando and Mendis 1962; Selvarajah and Costa 1979;

Pernando 1980).

This study is mainly concerned with the abundance of zooplankton which

This study is mainly concerned with the abundance of zooplankton which

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play an important role in the food chain in ponds. The local

specially play and important role in the food chain in ponds. The local

specially play and important role in the food chain in ponds. The local

specially play and p

hobbils (big-head carp).

Zooplankton fulfil a vital role in the transfer of energy through the dood chains since they are the intermediate step between the phytoplankton food chains since they are the intermediate step between the phytoplankton

and most fishes.

1 Present address: Chundikudi Girls College, Jaffes.

The Study Area

The two ponds selected for this study were Ariyakulam (80° 01' 05° E. 9° 40' 00" N) and Resal. (80° 00' 30" E, 90° 39' 45" N) both situated within the Jaffna municipality. Ariyakulam is located about one mile northeast to Repal pond. The area and maximum depths of these two ponds are 0-524 hectares and 2-94 meters for Ariyakulam and 0.920 hectares and 1-72 meters for Regal nond.

These two ponds receive water during the north-east monsoon extending up to February. In addition to this they are supplied with drainage water throughout the year.Particularly the drains that reach the Regal pond collect water from the adjacent hospital and motor service station.

During the end of the dry season (that is about August) Ariyakulam dries completely, but sometimes intermonsoonal rains provide certain amount of water. The Regal pond, since it collects the drainage from the town. does not dry up and has sufficient water to tide over the dry season,

Considering the boundary areas, Ariyakulam is surrounded by large trees Terminalia griuna. Thespesia populnea, Delonix elata and Ficus religiosa and some bushes especially of Calotropis. The wide spreading branches of these were found to cover a considerable area of the pond, except its middle region, while the Regal pond is almost exposed, with only 2 or 3 large trees. A small area of the pond which is near the clock-tower situated close by is mostly covered with grass. Materials and Methods

The study commenced with the initial filling of the ponds (October 1980) and was planned to conclude with the termination of the dry season (August 1981). From each pond, weekly plankton samples were taken at about 10.30 a.m. and 40 samples were obtained throughout the study period from each pond.

Physical parameters

Temperature and light are the main physical parameters that determine the distribution of pond water organisms. Temperature was measured using a thermometer which was placed at a point about one foot below the surface-The transparency of the water was observed using a sachchi disc,

Samples to determine water chemistry

To determine the oxygen content, water samples were taken monthly at about 30 - 40 cm below the surface. They were collected in 125 ml dark stoppered bottles which were filled until they overflowed once. To determine the amount of oxygen, unmodified Winkler method was used. For determine the samples was fixed in the field by the addition of managements this, oxygen to the line of the first of the admitted of manganous alphate and potassium iodate solutions. The resultant precipitate was dissolved sulphate and possession and attracted with sodium thiosulphate solution.

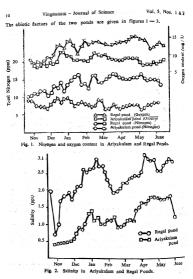
Since the pH is known to change in an isolated container of water it was measured in the field using pH paper and immediately upon arrival

in the laboratory a more exact reading was taken using a Bookman pH meter. Water samples for the determination of salinity and nitrogen content were obtained in one litre plastic bottles and analysed within four hours. Salinity was determined by titrimetry. Total nitrogen content was determined by Kjeldhal method converting nitrogen into ammonia.

Collection of plankton samples Ouantitative plankton sampling was performed on each pond at every

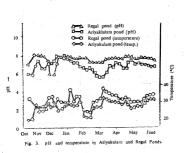
observation period by pouring a measured volume of water through a plankton net of 64 P mesh and concentrating to final volume. By prior trials, a 10 litre sample concentrated to 40 ml was found to be suitable. Water was poured through the net so that the filtered water was poured back into the pond. The samples were immediately preserved in 5% formalin

Qualitative and quantitative analysis of plankton


Among the algal population the blue-green alga Microcvetis species was not counted because of its high density. For quantitative purpose all other sneries of algae were considered collectively as "algae". Identifications of organisms was carried out mostly to the generic level

One millilitre of the sample was withdrawn with a pipette, after thoroughly mixing to homogenize the concentrate, and transferred to a Sedewick - Rafter counting cell and covered by a coversiin. Three counting techniques were used (Tribbey 1965). For larger organisms counts were made of the entire number within the counting cell under low magnification. Smaller and sparse forms were counted by traversing the width of the cell and counting all the types encountered For very common smaller forms the number in one field was recorded. This was repeated for 5 fields and the average of these five counts was taken.

Bottom samples were first analysed for microfauna. Then they were dissolved in water and the resultant solution was examined under the microscope for microorganisms. Significance of correlation between biotic and abiotic factors was determined by the large sample approximation test for significance of correlation. The number of samples used was was 40 (hence > 30).


Results and Discussion

The bottom of both ponds were found to be muddy, but that of the Regal pond was found to be much softer in nature than that of Ariyakulam, V - 2

December: 1990

The phytoplankton common to both ponds were species of Chiamydomonas, Ulathrix, Pediastrum, Spirogyra, Volvox, Clisterium, Navicula, Asterionella, Scenedesmus and Microcystis. The zooplankton common to both pouds were species of Daphnia, cyclops, Brockionus, Vorticella, Epistylis, Philodina, Euglena, Parameclum and nauplius larvae.

Ariyakulam pond had Nelumblum and fish fingerlings. birds - Heron, tadpoles and mosquito larvae, while Regal Pond had shrimps and Pislia. Correlation matrix between biotic and abiotic factors in Regal and Ariyakulam ponds is given in Table 1.

it was found from this study, that both Ariyakulam and Regal ponds possess similar types of algae and mesofauna, but the larger organisms showed Variation in types in these two ponds.

Correlation matrix between biotic and abiotic factors in Regal and Ariyakulam ponds

1	- 1		-, ,-		nus		
		C _s Nitrogen	- 0,079	0.104	- 0.644*	- 0.524*	- 0.040
	g l	C ₇ Oxygen	- 0,089	0.258	- 0.736*	-0.560*	0,230
		C ₈ Salinity	0.065	0.185	- 0.569*	- 0,461*	0.448*
	Re	C _s pH	- 0,166	- 0.124	- 0.134	- 0,298	0.191
		C ₁₀ Temperature	0.190	- 0.307	- 0.034	- 0.014	0.069
		C ₆ Nitrogen	0.88*	-0.322**	0.196	0.038	0.171
	Pond	C ₇ Oxygen	0.148	- 0.188	0.473*	- 0.526*	0.031
		C ₈ Salinity	0,282	0,073	0.052	- 0,744*	- 0.092
	Ariyakulam	PH	0.274	~ 0.321**	0.468*	- 0,241	0.281
		C		1	1		0.101

^{*} Significant at 1% level. ** Significant at 5% level.

In the correlation matrix of the Regal pond the relationship between nitrogen and the rotifer Brachionus, nitrogen and the crustacean larva nauplius, oxygen and Brachionus, oxygen and nauplius, salinity and Brachionus, salinity and namilius, and salinity and algae were found to be significant at one percent level while all other relationships were found to be not significant. In Arivakulam nond, the correlation of nitrogen and the crustacean cyclops, oxygen and Reachionus, oxygen and nauplius, salinity and nauplius, pH and Brachionus and temperature and nauplius were found to be significant at one percent level. The correlation of nitrogen and Daphnia, pH and Daphnia, and tempersture and evelons were found to be significant at five percent level. All other correlations of the Arivakulam were found to be not significant.

Burgis et al. (1973) have shown that the species of Daphnia found in the Limnetic region in the tropics are of small size and that high temperature limits Danhnia directly or indirectly.

Acknowledgements

We wish to thank Miss C. Raiendram of the Zoology Department, University of Jaffna, for helping us in the preparation of the manuscript. We also wish to record our thanks to Mr. C. Elankumaran of the Department of Economics who helped us with the statistical analysis-

References

Burgis, M. J., Darlington, J.P.E.C., Dunn, I. G., Grant, G. G., Gwaha, J. J. and McGowan, L.M. (1973) The biomass and distribution of organisms in Lake George, Uganda. Proceedings of Royal Society London (B) 184: 271 - 298. Fernando, C. H. and Mendis, A. H. (1962) Guide to the fresh water fauna of

Ceylon. Bulletin of Fisheries Research Station, Sri Lanka 12, 11-29. Fernando, C. H. (1980) The fresh water zooplankton of Sri Lanka with a discussion

of tropical fresh water zooplankton composition. Sawers, London. Selvara jah, N. and Costa, H. H. (1979) Distribution of Anostraca and Conchostraca

(crustacea) in the Jaffna peninsula. Bulletin of Fisheries Research Station, Sri Lanka 29, 79-87. Tribbey, B.A. (1965) A field and laboratory study of ecological succession in temporary-

ponds. Ph.D. thesis. University of Texas, U.S.A.

LABORATORY REARING OF CYRTORHINUS LIVIDIPENNIS (HEMIPTERA: MIRIDAE)

G. F. RAJENDRAM AND FRANCESCA R. DEVARAJAH¹ (Department of Zoology, University of Jaffina, Jaffina, Sri Lanke)

Vingnanam — Journal of Science 5: 14—21 (1990)

ABSTRACT: Laboratory rearing of Crystochicus lividibennis Router

in three hypes of cases was compared -claimery case, platfo Christian ($\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$, $\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$, $\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$, $\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$, $\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$, $\rho_{\rm c}$, $\rho_{\rm c}$, $\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$), $\rho_{\rm c}$, $\rho_{\rm c}$,

Introduction

Cytorhinus Indilgoninis Reuter is a predator of the planthopper and left hopper pests of the rice copy in Southeast Asia and the Pacific (Chic 1979, Yasumstau et al. 1981, Liquido and Nishida 1985). Its increased important in recent years as a biological control agent is due to the rice to pest status of the planthopper and leafhopper complexes, following the introduction of high yielding rice varieties; Garnith 1972, Nickel 1973, In St. Lantle, C. initigipment has been reported from the districts of Amparai, Burticulos and Klimonchoit (Rajanderum 1982, 1984), Jaffica (Rajenderum 1987, 1984), Jaffica (Rajenderum 1989, 1984), Jaffica (Rajenderum 1989), Kamply and Kurumagala (Rajenderum 1996), Kamply and Kurumagala (Rajenderum 1996), Kamply and Kurumagala (Rajenderum 1996), Kamply and Kurumagala (Rajenderum 1996).

Mudies on the biology of C. Indifferents have been forthcoming from different countries. Studies on the biology have been earthed out on C. biolifornist reared in capes 45×20×50 cm in the Philippines by Reyes and Gabriel (1973) in capes 55×55×60 cm in Hawaii by Liquido and Nikida (1985) and in chinnery capes in falian by Samal and Mirra (1977). In ST Lanka, the biology of C. Biolifornist was studied on cultures muintained in capes of smaller dimensions 2, 3×25×25 cm, made of clear plastic and provided

¹ Present address: Department of Zoology, Eastern University, Chengaladi P.O., Sri Lanks

December 1990 Rajendram & Devarajah: Laboratory rearing of C. loidtpennis 15.

with cloth sleeve on one side (Rajendram and Devarajah 1986). Thepresent study compares the rearing of C. lindipressi in three types of cages the chimney cage used by Samal and Misza (1987), the plastic sleeve cage used by Rajendram and Devarajah (1986) and a large wooden cage 105/XT5.600m.

Materials and Methods

C. lividipennis cultures used in these experiments were collected from rice fields in Paranthan and reared on N. layers cultured in the laboratory at the University of Jaffina on rice variety Bg 90-2. The temperature in the laboratory registered a range of 26-32°C and relative humidity 40-39%.

Chimney Cage

The chimney cage (Fig. 1) was constructed as follows. A 900 ml plattic bottle was sawed off at a height of 10 cm, and a 4-6 week old rice plant from a garden plot was placed in it and covered with mud to a height of 8 cm. A 10 cm high chimney with a narrow base, 7-5 cm in diameter, fitted prints the plattic container. The height of the chimney above the level of the plattic container was 17 cm.

Fig. 1 Chimney cage: (a) Chimney; (b) Plastic container; (c) Cotton gauze.

The culture was set up by introducing a male -female pair of C. Ideal-Famile adults and two male -female pairs of N, largers adults in the chimney size by means of an appirator. The mouth of the chimney cape was covered with cotton gauze. Sixty-five chimney capes were set up during the coarse of this study.

Plastic Sleeve Cage

16

The second type of cage used was a clear plastic cage measuring 20×25×25 cm, covered with fine mesh nylon at the sides, a plastic door in front, and a cloth sleeve fitted on one side (Fig. 2). Six plastic bottles with rice plants were placed in the case.

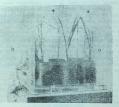


Fig. 2. Plastic sleeve cage: (a) Door; (b) Cloth sleeve-

The culture was set up by introducing three pairs of C. lividipennis adults into each cage along with three pairs of adults and 10 nymphs of N. lugens. Two adult pairs and 5 nymphs of N. lugens were introduced into each cage weekly. A total of 16 cages was set up in this experiment and a population count taken at the end of 30 days,

Large Wooden Case

The third type of cage was a wooden cage measuring 106×73×60 cm, made of a wooden frame, fitted with glass at the back, fine wire mesh on the top and the sides, and two sliding glass doors in front (Fig. 3). A cloth sleeve with a wooden frame could be fitted below a partially open door for use in transferring cultures. Rice plants grown in 25×15×9 cm wooden boxes were placed in the cage for the host insects. Six plastic containers, with 4-6 week old rice plants, were introduced for oviposition by C. lividipennis.

The culture was set up as follows. Three male female pairs of C. linklipennis were introduced into the cage, as well as four pairs of N. lugens adults and 10 nymphs. Only one large cage was used and the population fluctuation noted during 7 consecutive months.

Chimney Cage

Of a total of 65 chimney cages set up, only 20 had nymphs, indicating an efficiency rate of about 29%. The number of nymphs produced in the cages ranged from 2 to 8, 5 being the median (Fig. 4). Although a total of 65 pairs or 130 individuals were used in setting up the chimney cages, only 103 nymphs hatched out. Hence the reproductive rate in the chimney cages

was not sufficient to maintain the population.

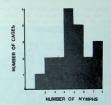


Fig. 4. Histogram showing distribution of C. lividipennis nymphs in the chimney cages.

Plastic Sleeve Cage

The number of C. lividipennis in the plastic sleeve cage at the end of 30 days ranged from 18 to 37, with a mean of 27.7 (Table I). This represents a five-fold increase from the original 6 insects (3 males and 3 females) introduced into each case.

Table 1. Number of C. Indipensis nymphs and adults in plastic sleeve case after 30 days

Cage No.	Number of insects	Mean ± SD
1	37	
2	33	
3 3	23	
4	22	
5	18	
6	33	27·66±6·96

The total number of C. Intellegenia symples and adults in the large cage was 20 at the end of the first month. 35 at the end of the second month and 30 at the end of the 7th month (Fig. 5). The maximum number of C. Intellegenia at any time during the 7 month period was 35. The number is approximately the same as in the smaller plastic sleeve case.

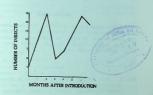


Fig. 5. Population fluctuation of C./imdipensis in the large wooden cage during a 7 month period.

Discussion

Of the three types of cages used in this study, the plastic sleeve cage was the most efficient. C. Heidspeoms rearned in this cage showed an increase ranging from 300% to 500% at the end of 30 days. The cage was also easy to handle and required relatively few rice plants for the host insect.

C. li-idipennis population in the large wooden cage showed an increase of up to 200%. Relatively more host plants were required to maintain the cultures of the host insect than in the plastic sleeve cage.

The chimney cage was the least effective, showing an efficiency rate of only 29% Insects reared in these cages diminished to 79-2%, of the original population in the first generation. Transferring of insects to cages with fresh plants was time consuming

90

The age of the rice plants was critical in rearing C. hiddpenuls. Matter rice stems with a minimum girth of about 1: Som were required for oviposition by C. hiddpenuls. The rice plants had to be 4-6 week old. C. hiddpenuls did not oviposit in young rice seedlings. This observation is in agreement with the findings of Samal and Mitra (1977) and Liquido and Nichida (1985) who used 30 day old rice plants for rearing C. hiddpenuls.

Acknowledgement

Grateful thanks are due to Professor V. K. Ganetalingam. Department of Zoology, University of Jaffins, for facilities and to Dr. S. Senadhiris, Central Rice Breeding Station, Batalagoda, for paddy's seeds. This work was supported in part by grant no. RGB/80/95 from the National Science Council of Sr Lanks. awarded to the first author.

References

- Chiu, S. C. (1979) Biological control of the brown planthopper. In: Brown planthopper: threat to rice production in Asia pp. 335 – 355. International Rice Research Institute. Los Banos, Philippines.
- Liquido, N. J. and Nishida, T. (1985) Variation in number of instars, longevity and fecundity of Crytochiaus Iridippennis Reuter (Hemiptera: Miridae). Ann. Entomol. Soc. Am. 78: 459 – 463.
- Nickel, J. L. (1973) Pest situation in changing agricultural systems a review. Bull. Ent. Soc. Am. 19: 136 – 142.
 Otake, A., Somasundaram, P. M., and Abeykoon, M. D. (1976) Studies on popu
 - lations of Sogatella furcifera Horvath and Nilaparvata lugens: Stal (Hemipitera: Delphacidae) and their parasites in Sri Lanka, Appl. Entomol. Zool. 11: 284 – 294.
- Rajendram, G. F. (1982) The brown planthopper problem. Presidential Address, Section D. Proc. Sri. Lanka. Assoc., Advant. Sci., 38(2): 49 – 54.
- Rajendram, G. F. (1984) Biological control of paddy pests in Sri Lanka. Vidurawa: Bulletin of Natural Features, Energy and Science Authority of Sri Lanka 8 (1): 16 - 19.
- Rajendram, G. F. and Devarajah, F. R. (1986) Observations on the biology of Cyrtorhinus litidipenus (Hemiptera: Miridae). Vingnanam - Journal of Science 1: 46 - 52.

- Desember 1990 Rajendram & Devarajah: Laboratory reading of C. lividipenins 21 gajendram, G. F. and Devarajah, F. R. (1987) Studies on the predatory effectiveness of Cyrtorhinus lividipennis (Hemiptera: Miridae) on Nilaparvata lugens (Homoptera: Delphacide). Vingsanam - Journal of Science 2: 30 - 37.
- Rajendram, G. F. and Devarajah, F. R. (1990) Survey of some rice insect pests and their predators in three districts of Sri Lanka, J. Natn. Sci. Coun.
- Sri Lanka 18 (1): 79 92 Reves, T. N. and Gabriel, B. P. (1975) The life history and consumption habits of Cyrtorhinus lividipennis Router (Hemiptera: Miridae). Philipp. Entomol
- 3: 79 88. Samal, P. and Misra, B C. (1977) Notes on the life bistory of Cyrtorhinus lividipennis Reuter, a predatory mirid bug of rice brown planthopper Niloparvata lugens (Stal) in Orissa. Orvza 14 (1): 47 - 50.
- Smith, R. F. (1972) The impact of the green revolution on plant protection in tropical and subtropical areas. Bull. Ent. Soc. Amer. 18: 7-14.
- Yasumatsu, K., Wongsiri, T., Tirawat, C., Wongsiri, N. and Levanich, A. (1981) Contributions to the development of integrated rice pest control in Thailand. Japan International Cooperation Agency, Japan.

Received for publication March 1991. stars on the molecular of historic during the different graces at a deal

STRAIN INDUCED DIFFUSION OF HYDROGEN IN PA ALLOY MEMBRANES

K. Kandasamy

(Dopartment of Physics, University of Jaffna, Jaffna, Sri Lanks.)

Vingnanam — Journal of Science 5: 22 — 29 (1990)

ABSTRACT: An equation for the diffusion flux of hydrogen through thin slab shaped membranas is derived. The effect of an induced elastic field on the diffusion flux is demonstrated. A comparison of the published experimental result with the outlined theory is given.

Introduction

The behaviour of hydrogen in a metal lattice has been a stimulating study for many research worker. Very recently abnormal behaviour of hydrogen diffusion in Pd alloy membranes was reported and interpreted as hydrogen diffusion in Pd alloy membranes was reported and interpreted as hydrogen to the control of the property of the prope

Theory

 Derivation of an equation for elastic stress induced by the diffusing interstitials in thin slab lattice

Consider a this slab geometry with the space co-ordinates illustrated in Figure 1. Assume homogeneous distribution of interstitials as a trees free reference state. A change in the distribution of interstitial concentration from homogeneity will result in the introduction of internal stress. Assume a change αc in the concentration of internal stress. Assume the concentration of internal stress that the concentration of internal stress that will be concentrated by the concentration of internal stress that we have the concentration of the concen

X=O. In general Ac is a function of space and time t, since the absorption is controlled by the diffusion. The part of the lattice which absorbs interstitials is expanded. The internal stress that is responsible for the expansion comes from interstitials and it can be expressed as 6 = K∆c where K is a nositive constant (Cermak and Kufudakis 1976). This expansion caused by the composition change will be opposed by the remaining part of the lattice by elastically developing an internal stress, d.

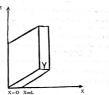


Fig. 1. Thin slab geometry with space coordinates (XYZ). The thickness L of the slab is very small compared to the width and the length.

Therefore the total internal stress d is given by $d = d + d = K \Delta c + d$

Assume the diffusion is only along the X direction. This is similar to assuming a constant concentration of interstitials in the YZ plane. Then in the slab

material the component of the internal stress along the Y direction, 6 is the same as the stress component along the Z direction, 6_ and the

stress component along the X direction & is zero (Timoshenko 1934). The slab is under static equilibrium. Therefore the net force on the slab and the momentum about X = L/2 should be zero.

Vingnanam - Journal of Science

24

Vol. 5, Nos. 1 & 2

(2a)

(3a)

in the slab. The other part is due to the bending of the lattice. This should vary linearly and symmetrically about X = - (assuming constant Young's modulus). Therefore the elastically induced stress could be expressed as 6+6(X-L/2) (4)

where δ represents the part responsible for expansion and δ (X = L/2) represents the part responsible for bending of the lattice.

Substitution of equation (4) in equations (2) and (3) will lead to the following: $d = -\frac{K}{L} \int \Delta c \, dx$

$$d = -12 - \frac{K}{3} \int \Delta c \left[x - \frac{L}{2}\right] dx$$

componets d , d can $\delta_{YY} = \delta_{ZZ} = K \left\{ \Delta e - \frac{1}{L} \right\} \Delta e \, dx - \frac{12}{3} \left[X - \frac{L}{2} \right] \int \Delta e \left[X - \frac{L}{2} \right] \, dx$

lattice are equivalently given by $= d_{ZZ} = -K \{ \triangle c - \frac{1}{L} \int_{-L}^{L} \triangle c \, dx - \frac{12}{3} \left[X - \frac{L}{2} \right] \int_{-L}^{L} \triangle c \left[X - \frac{L}{2} \right] dx \}.$

95

For the problem considered here, that is with zequal tensile stresses in the γ and Z directions and zero stress in the X direction, the strain ϵ and stress δ can be related by

Décember 1990

V-4

where E is the Young's modulus and ν is the Poisson's ratio. If we assume Young's modulus and Poisson's ratio to be constant then

$$K = \frac{d}{d} \frac{d}{c} = \frac{E}{(1-y)} \frac{d}{dc}$$

Using Vegard's law for interstitials, (Cermak and Kufudakis 1976), $\frac{d}{dc}$ can be replaced by $\frac{1}{2}\sqrt{}$ where $\sqrt{}$ is the partial molar volume of interstitials

Therefore
$$K = + \frac{E \vec{V}}{3 (1-\nu)}$$

From this it follows that the stress components are

$$\delta_{YY} = \delta_{ZZ} = -\frac{E\nabla}{3(1-\nu)} \{ \triangle e^{-\frac{1}{L}} \int_{0}^{\infty} \triangle e \, dx - \frac{12}{L^{\frac{1}{2}}} [X - \frac{L}{2}] \int_{0}^{\infty} \triangle e \, [X - \frac{L}{2}] \, dx \}$$
and $\delta_{XX} = 0$. (6)

The above expressions for stress components are exactly identical to the pressions deduced by Larche and Calm (1982) from the theory of thermoclasticity.

b) Derivation of equation for diffusion flux in the presence of induced internal stresses

In general the diffusion flux of hydrogen J could be written as (Volkl and

Aleffeld 1978 and Wipf 1976)

J — Mc grad # (7)

where M is mobility, c is concentration and P is the chemical potential of hydrogen in the solid. The chemical potential of hydrogen in a solid which is under a tensile stress P (c, d) could be expressed as (Flanagan and Lynch 1976)

p (c, d) = p (c, o) $-\tilde{v}_n$ ϕ (8)

Where ∇ is the partial molar volume of hydrogen in the solid and p (c, o)

where V is the partial motar vocation of P_H is the standard chemical potential in stress free state. If P_H is the standard chemical potential of hydrogen atom then

$$P$$
 (c, d) = P H + RT in c (9)

Where R and T have their usual meaning. Since the chemical potential of

hydrogen is a function of c and d equation (7) can be expanded as, $I_{\text{min}} = -\text{Me} \left\{ \text{grad } \not P \left(c_{i} o \right) + -\frac{dP}{dd} \left(c_{i} d \right) \text{ grad } d \right\}$

- Mc
$$\frac{d\mathbf{p}}{dc}$$
 (c, o) grad c - Mc $\frac{d\mathbf{p}}{dd}$ (c, d) grad d (10)

But from equation (8) $\frac{d\mathbf{P}}{dt}(\mathbf{c}\,\mathbf{d}) = -\overline{\mathbf{v}}_{H}$ and the quantity

Mc $\frac{d\mu}{dc}$ (c, o) could be defined as the diffusion coefficient, D_H

$$\begin{array}{ccc}
D_{H} & \nabla_{H} \\
H & H
\end{array}$$

$$\begin{array}{ccc}
D_{H} & \nabla_{H} \\
\frac{dF}{dc} & (c, c)
\end{array}$$
grad of

But from equation (9) $\frac{d\vec{p}(c,o)}{dc} = \frac{RT}{c}$

Equation (10) can then be written as

96

Therefore
$$J = -D_H$$
 grad $c + \frac{c}{RT}$ grad d

Chen Min Li (1978) has suggested a similar equation to explain the possibility of enhanced diffusivity of isotropic solute in solid lattice. In a previous paper the author (Kandasamy 1989) has used the Chen Min Li formalism to explain the experimental result of Lewis et al. (1987). Here the equation has been derived from basic principles. On substitution for grad of from expression (6) for the stress components, the flux J is given by

Discussion

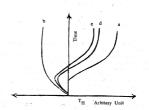
Equation (11) for the diffusion flux of hydrogen can be written as

ation (II) for the diffusion flux of bydrogen can be written as
$$J = - D^{*} \frac{dc}{dt} + \frac{8 \, V^{2} \, E \, D}{L^{2} \, R \, T} \int_{0}^{L} \Delta c \, \left\{ x - L^{2} \right\} dx \qquad (12)$$

where
$$D_{H}^{*} = D_{H}^{*} \{1 + \frac{2 \nabla_{H} c E}{3 R T} \}$$

The first term of equation (12) is identical to Fiction flux term but with an enhanced diffusion coefficient due to elastically induced stress (extension part). The variation of this term with time could be represented by the characteristic break through nature (Crank 1972) as illustrated by plot (a) in figure (2). The second term also represents the effect of an elastically induced stress (bending part) due to the inhomogenity of hydrogen distribution during diffusion process. We can show that this effect generates a hydrogen flux in the negative X direction, that is a flux against the concentration gradient. To illustrate this consider the second term of equation (12) at short times, that is when

D_H
$$d L^2 << 1$$
 then the integral $\int_0^L \Delta c [x - L/2] dx$ can be approximated by $-\int_0^L \Delta c dx$


which is equal to $-\frac{L^2}{3} \stackrel{C}{\underset{O}{\triangle}} \stackrel{(D)}{\underset{H}{\underbrace{}}} \stackrel{(J)}{\underset{U}{\underbrace{}}} \stackrel{L^2}{\underset{U}{\underbrace{}}} 1/2$ where $\stackrel{\Delta c}{\underset{O}{\underbrace{}}}$ is the concentration change

at x=o. Therefore the second term of equation (12) is

which represents a flux in the negative direction. After a very long time, that is when D t/L2 > 0.45 say, we could assume the establishment of a steady state of diffusion (Crank 1972). At steady state of diffusion we could assume linear variation of the concentration across the slab thickness. At this state the

28

flux in the negative X direction. Therefore the variation of the second term of equation (12) could be represented by plot (c) in figure (2). This is in qualitative agreement with the published results of Lewis et al. (1987) which are reproduced in plot (d) of figure (2).

ig. 2. Plot (a) Variation with time (t) of the first term of equation (12) for hydrogen flux J

Plot (b) Variation with time (t) of the second term of equation (12) for hydrogen flux J_H

Plot (c) Variation with time (t) of the diffusion flux J given by

equation (12)
Plot (d) Experimental diffusion flux J with time (Lewis et al. 1987).

Conclusion

An expression for the stress induced by compositional inhomogeneity can be derived from simple Vegard's law. The observed abnormal behaviour of bydrogen diffusion can be accounted for by including the effect of stress induced by the compositional changes in the diffusion process.

Cermak, J. and Kufudakis, A. (1976) Diffusion - elastic phenomenon and diffusivity of hydrogen in Metal, J. Less Common Metals 49, 309 -11. Chen Min Li, J. (1978) Physical chemistry of some microstructural phenomena. Metal. Trans 9A 1353 - 1378.

Crank, J. (1972) The Mathematics of Diffusion, Oxford University Press,

London.

Flanagan, T.B. and Lynch, J. F. (1976) Partial molar volume of hydrogen in metals with titanium films. J. Less Common Metals 49, 25-29. Kandasamy, K. (1980) Interaction of hydrogen and oxygen. Ph. D. thesis,

Keele University, United Kingdom. Kehr, K. W. (1978) Hydrogen in Metals 1. Topics in Applied Physics, 28-30.

Larche, F. C. and Chan, J. W. (1982) The effect of self stress on diffusion in solids. Acta Metall. 30, 1935 - 1948.

Lewis, F. A., Magennis, J. P., McKee S. G. and Ssebuwufu, P. J. M. (1983) Hydrogen chemical potentials and diffusion coefficients in hyd-

rogen diffusion membranes. Nature 306, 673 - 676. Lewis, F. A. Baranowski, B. and Kandasamy, K. (1987) Uphill diffusion

effects induced by self stresses during hydrogen diffusion through metallic membranes. J. Less Common Metals 134, L 27 - 31. Kandasamy, K. (1989) Diffusion of hydrogen in metals. Vingnanam -

Journal of Science 4. 1-7. Peisl, H. (1978) Lattice strains due to hydrogen in metals. Hydrogen in

metals 1. Topics in Applied Physics 28, 53 - 58. Timoshenko, S. (1934) Theory of Elasticity. McGraw Hill, New York. 203 pp.

Volki, J. and Alefeld, G. (1978) Diffusion of hydrogen in metals. Hydrogen in Metals 1. Topics in Applied Physics, 28, 321 - 327.

Wagner, H. (1978) Elestic interaction and phase transition in coherent metal - hydrogen alloys. Topics in Applied Physics, 28, 27 - 35.

of Jaffine Sri L.

Wipf H. (1976) J. Less - Common Metals 49, 291 - 296.

Received for publication December 1991

ANDREW T. CHAMBERLAIN

(Department of Archaeology and Prehistory, The University of Sheffield, Sheffield S 10.2 TN, England

Vingnanam - Journal of Science 5: 30 - 42 (1990)

ABSTRACT: The main sources of evidence for human evolution

are discussed.

are reviewed. The pattern of diverellication of primates from
their origins at the beginning of the Consocio era has been
reconstructed using a combination of morphological evidence
to more an experiment of the consocio era commente and the consocio erace of the c

Introduction

During the second half of the 19th century following the publication of Charles Darwin's "The Origin of Species" (Darwin 1859) the theory of evo-lution by natural selection became widely accepted among natural scientists. Interest and speculation about human ancestry was stimulated by Darwin's work, although Darwin himself was initially cautious about discussing human evolution. In his later book "The Descent of Man" (Darwin 1871) he was more forthcoming on the issue and assembled "three great classes of facts" which he held to demonstrate conclusively that humans had evolved from 'lower' animals. Darwin's evidence consisted of the homologous anatomical structures and physiological processes in humans and other animals; the similarities between humans and animals in patterns of growth and mode of development; and the presence in humans of rudimentary structures and organs that were best explained by gradual evolution from animals in which the same structures were fully functional. This body of indirect evidence was considered by Darwin to demonstrate that humans had evolved under the same constraints and mechanisms of natural selection as had other organisms, despite the absence (at the time he was writing) of any evidence for intermediate forms, either fossil or living, that could bridge the gap between humans and their closest relatives among the primates.

The evidence available today to students of human evolution is augmented by two sorrees of data that were undiscovered in Darwickliktime. There are now a large number of fossil hominids, dating from about 6 million years ago (6 Ma) up to the end of the Pleistoccus, which allow some of the intermediate attages of human evolution to be identified and investigated. Secondly there is a new source of comparative that genrated by the recently developed methods of molecular biology which provides an observation of the comparating the biological affaints of living provides an observation of the comparating the biological affaints of living provides an observation of the comparating the comparation of phylogenies derived from anythological evidence. This amount of the position of the bonized within the phylogeny of the primaramanists the position of the bonized pithesus and early Homes and discusses the cross the found remains Autordation of hipoclaims. The term 'bonized' is used to emission of the station of hipoclaims. The term 'bonized' is the unique ylaman in its cladest passes of referring to the monophylosic group that includes a late and clockyt related to Homes agiest than to any other inviting primate and

Primate Evolution and the Molecular Clock

"Modern primates occupy forest months and the best beneath fall within the tropical region. Their pencies and distinctions in also constrained by their historical Biogeography (Hoffitesters 1974), but the properties of himman predation and modern changes in land-use (Harroutt 1904); Box 1991). Together, with other modern orders of mammals, primate 1904; Box 1991. Together, with other modern orders of mammals, primate ordgins can be intended back to the beginning of the Consonic (Fertilery) era, religion to the primary of the Consonic (Fertilery) era, religion in Algeria have shown that antiropod primates 1909. Recent discoveries in Algeria have shown that antiropod primates 45 Ma (Goldman Mohbouth 1992). The divergence of the authorpoids into their two major cutting infraorders, the New World (Phytrinkia) and Oli World (Catava, far which the faunts, is now estimated to have occurred before 40 Ma, after which the faunts, is now estimated to have occurred before 40 Ma, after which the faunts in the contraction of the contract

The pattern of diversification of the Oil World monitors and a patintuiting human) has been established by ombining the evidence from well dated foralls with the results of morphological and biomolecular comparisons between living expresentative of the different cutarthers included and later to image. The contract of the contract of the contract of the contract of the contract DNA, over 50 percent of which appears to be modificational nor of this evolutionary change is selectively metrical since it sucher benefits and dandwantages the organism. Most affect of the contraction of the such contraction of the contra

from environmental influence, such as the efficiency of DNA repair mechanisms and the time between germland perplications.

Protein and DNA companions have yielded a highly corroborated sequence of branching 1999. The produce of branching 1999 Mayanoto and Goodman 1999). Phis varieties protein protein 1999 and produce of protein 1999 and produced the sequence of individual branching events by cultivating all fast essential countries. The sequence of individual branching events by cultivating all fast essential produced the produced produced to the sequence of individual branching events by cultivating the produced produced to the sequence of the produced produced to the sequence of the produced produced to the produ

32

is usually calibrated at two points, by the fossil evidence for the emergence of the exceptihecoid (Old World monkey) lineage at 25 - 35 Ma, coupled on the complete of the form of the form of the lineage leading to the compensation which diverged from the African ape and human lineage before 15 Ma (see below). Interpolation of the dates of the other branching points shown on Figure 1

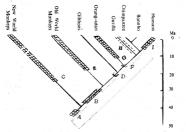


Fig. 1. Phylogenetic tree for living anthospoid reinates, based on the branching sequence established from biomedecular and morphological evidence. The hatched regions indicate the extent of the foodil record for such of the groups of living primates. Foodil evidence for the first appearance of these lineages is as follows: A Anthospoid (Algorphiteces): B. Clastribines (Aegospothetees: Propling-thecen): C. Plasyrchines (Amustellar), B. Hosainodoi: Processura); E. Cercopithecolós. H. Commission of the control of the control

might conceivably be affected by changes in the rate of molecular evolution, which may have slowed down as generation lengths have increased during primate evolution (Li and Tanimura 1837). In fact generation length is relatively stable among the living apex, ranging from about 11 years in gibbons to between 12 and 14 years in great apex, and developmental timing nearly homioids apones to resemble that of living apex, rather than modern

humans (Beynon and Dean 1988). It is probable therefore that generation length in apes, and by inference the rate of neutral molecular evolution, has changed significantly only in the terminal phase of the evolutionary history of modern Honto sagiran.

One prediction of the "molecular clock" is that human diverged from the Arlican apos in the late Microne, less than 10 M and perlaps as recently as 7 Ma. The Asian middle Micocene genus Rampotherau was formerly classified as a close relative of the hominals (Wilbeam 1997; Stally and Delson 1997), but following the synonymy of Rampoidecan with Shapitheau for the 1997, but following the synonymy of Rampoidecan with Shapitheau to the 1997, but following the synonymy of Rampoidecan with Shapitheau to the 1997, and the identification of derived characters incling Shapitheau (and the 1997) of the hominal clode are now thought to lie outside the Asian continued and for the hominal clode are now thought to lie outside the Asian continued and are now thought to lie outside the Asian continued and are not shaped to the source of the shaped of the carliest known fossil hominals, which cover in date of 16 Ma for the origin of the carliest known fossil present specified to 19 Ma (Eacky) and Leaky 1985) and the occurrence of Simplificant for local relative for the origin clarky 1985 and the occurrence of Simplificant for local relative for the original clarky 1985 and the occurrence of Simplificant for local relative for the original clarky 1985 and the occurrence of Simplificant for local relative for the original clarky 1985 and the occurrence of Simplificant for local relative for the original clarky 1985 and the occurrence of Simplificant for local relative for the original clarky 1985 and the occurrence of Simplificant for local relative for the original clarky 1985 and the occurrence for long than 1987 and 1987 a

different gene frequency and nucleotide sequence data offer strong support for an African origin of modern Home appior within the last 400 thousand years (Clann et al. 1987; Cavalli-Sforza et al. 1988; Vigilant et al. 1997; Long et al. 1997; Bowcock et al. 1997). Some biologisti, however, have criticated their 1997; Bowcock et al. 1997; Some biologisti, however, have criticated their and Languary 1999; Maddison 1991), and palaeousthropologists are divided over the implications of the DNA results for theories of human evolution (Mellars and Stringer 1999; Besser and Smith 1992), Some anthepologistis continue to advocate in size evolution of Home symples in revery stees of

The Earliest Hominids

The late Miscone primate fossil record in Africa is executingly genere (Pickford 1986), and the period of homined evolution from 8 to 4 Ma is thus peoply known. The earliest fossils that can be assigned with confidence to the human illensage are attributed to the primitive homined genus Autro-Ingiblence, which is present in East Africa from about 6 Ma (Hill and Ward 1988: sea also Tables 14 2). The oldest fossil hominid yet discovered in a mandible from Lothagam in Kenya. This fossil was found in sedimentary

	Table 1:	Earliest for	ssil evidence	for homin	ids in Africa	
Date (Ma)		Site	Sp	ecimen	Taxonomic Attribution	
3.0	Had	ar, Ethiopia	AL 2	38-1 'skeleton	A. afarensis	-
3.35	Kool	i Fora, Ken		602 al fragments	A. afarensis	
3-4	Omo	, Ethiopia	Omo tooth	20-1886	Australo pithecus	
3-5	Laete	oli, Tanzania	a LH 4 mand		A. afarensis	

Vol. 5, Nos. 1 & 2

Vingnanam Journal of Science

34

Maka, Ethiopia MAK VP I-1 A. afarensis < 4.0 femur 4.0 Belohdelie, Ethiopia BEL VP 1.1 A. afarensis cranial fragments

Feiei, Ethiopia FJ 4 SB 1.2 A. afarensis c 4.0 teeth KP 271 Kanapoi, Kenya A. afarensis 4.0 humerus Chemeron, Kenya BC 1745 Australopithecus ->4.2 humerus

cf. A. afarensis 4.9 Tabarin, Kenya TH 13150 mendible >5:5 cf. A. afarensis Lothagam, Kenya LT 329 mandible Hominoid (cf.Gorilla) Samburu Hills, Kenya SH 8531 c. 8-0

maxilla

deposits between volcanic layers with radiometric dates of 3,8 and 8.5 Ma; faunal correlations suggest that the specimen is older than 5.5 Ma. Although White (1986) expressed reservations about the attribution of the Lothagam

mandible to Australophthecus, Hill and Ward (1988) present a convincing case

Taxon	First Appearance (Ma)	Last Appearance (Ma)	Maximum Geographical Range
A. aethiopicus	2-6	2:3	E, Africa
A. afarensis	>5.0	2.8	E. Africa
A. africanus	3-1	2-3	S. Africa
A. boisei	2:3	1.4	E. Africa
A. robustus	1.9	1.2	S. Africa
H. habilis	2.4	1-5	Africa
H. erectus	1-75	0-4	Africa, Asia
H. heidelt ergensis	04	0-1	Africa, Asia & Europe
H. sapiens	0-1		Worldwide
The taxon	omic classification a	dopted in this Tabl	e follows Delson (1987)

for species in the genus Australogitheeus and Stringer (1984) for species of Homo. The species 'Homo heidelbergensis' has been substituted in place Stringer's informal taxon 'archaic Homo supiens'.

for its assignment to that taxon. An earlier fossil jaw from late Miocene denosits at Samburu Hills in Kenva is non-hominid, having closest affinities with the extant great ane Gorilla (Hill and Ward 1988). Confirmation of this taxonomic attribution for the Samburu Hills fossil, which is dated to around 8 Ma, would provide a minimum date for the divergence of the gorilla lineage and would therefore further constrain the timing of the origin of the human lineage.

Hominids are better represented in the early Pliocene with at least ten African fossil hominid sites now identified in the interval from 5 to 3 Ma (Table 1; Figure 2). Most of the fossils from these sites have been attributed to Australopithecus afarensis, a species which is best known from the samples recovered at Lactolt in Tanzania and Hadar in Ethiopia. The postcranial fossils at Hadar and the fossilised hominid footprints at Laetoli provide clear evidence of bipedalism in Australopithecus afarensis, although this species also retained some anatomical adaptations for arboreal locomotion (Susman et al. 1984).

East Africa before 2.0 Ma. Three isolated teeth from Member E of the Shungura formation at Omo, Ethiopia, dated to about 2.4 Ma have been attributed to the genus Home (Howell et al. 1987). At Koobi Fora in Kenya the genus Hoxo first appears in the upper part of the Burgi Member, dated to 1.9 Ma (Wood 1991). The type series of Homo hibilis from Olduvai Gorge in Tanzania includes specimens from Bed I, dated to 1.85 Ma, and from the lower part of Bed II, dated to 1.7 Ma (Tobias 1991). Specimens that have been attributed to Homo habilis, particularly the cranial remains of early Homo from Koobi Fora, are heterogeneous in their morphology (Chamberlain and Wood 1997; Lieberman et al. 1988; Chamberlain 1989) and there is currestly no clear connectants on the Euxonomic status of this species (Tobias 1991; Wood 199). The species Home-overtur which first appears at 1.75 Ma in the KIS moment of the Control of th

The earliest stone tools have been found in deposits dated to 2.7 Ma at Anda Gona in the Hadar region of Ethiopia (Harris 1980). All sites in Africa yielding the remains of fise to habits (Harris 1980). All sites in Africa yielding the remains of fise to habits (Harris 1980). All sites in Africa yielding the remains of fise to habits (Harris 1980) and the state of stone tools as the exclusive perceptive of Home. This assumption has been calledaged by Seams (1983) who agreet that the focal hand bones of Australeyolite-cur relevant (1983) who agreet that the focal hand bones of Australeyolite-cur relevant state of Home holds. The foosil remains a precision gip as suphisticated as that of Home holds. The foosil remains holds and the same sites as Home holds.

The evolution of bipedalism

Although a variety of modes of lecomotion have been adopted by primates (Martin 1990), the immediate anesters of hominids were large bodied hominoids that were probably adapted to climbing and suspensory postures (Susman et al. 1984). Several theories have been advanced to explain the evolution of upright posture and hipedal gait, a form of location of the properties of

Rodman and McHenry (1980) showed that when a bipedal animal walks it consumes less energy than a quadruped of the same body six although this advantage is reversed at higher speeds. Adaptive advantages in long distance bipedal walking might have included scavenging opportunities (from beine alse for follow migrating animalss Sindei et al. 1986, or the ability

prior to the appearance of Hamo.

Vol. 5, Nos. 1 & 2 38 to carry food in order to provision mothers who had dependent infants (Lovejoy 1981). However, recent models of early hominid social structure (Foley and Lee 1989) exclude the monogamous group structure on which Loveiov's provisioning hypothesis is founded, and there is no evidence of the widespread adoption of hunting or substantial meat eating by hominide

Wheeler (1984, 1991a, 1991b) has shown that by adopting a bipedal posture early hominids would have been able to reduce the heat load from incident solar radiation in the middle of the day. Further efficiency in thermoregulation would have stemmed from the loss of body hair in hominids, which would have allowed effective heat removal through convective cooling augmented by sweating. Since windspeeds are higher and air temneratures and humidity are lower away from the ground surface the hinedal posture also enhances evaporative cooling. Wheeler (1991b) argues that the combination of bipedalism with loss of body hair enabled early hominide to maximise the time spent on foraging for low density or scattered resources in equatorial grassland habitats,

Alternative scenarios in which there might have been a selective advantage for bipeds include the need to detect and defend against predators (Kortlandt 1980), enhancement of the efficiency of tool use (Marzke 1986 or the ability to move across steep and sparsely vegetated terrain (Jaanusson 1991). The process by which adaptations end up serving a useful function additional to the function for which they were originally selected has been characterised by Gould and Vrba (1982) as 'exaptation', It is likely that regardless of the initial impetus for bipedalism in early hominids, other benefits and opportunities emerged to contribute to the success of this radical change.

Acknowledgements

An earlier version of this paper was presented at a seminer held in the Science Faculty of the University of Jaffna in January 1989. It is dedicated to the memory of Rajani Thiranagama who arranged my visit to the University of Jaffna, and whose intelligence, generosity and courage greatly enhanced the lives of all who had the pleasure of working with her,

References

Aiello, L. and Dean, C. (1990) An introduction to human evolutionary quaterny-

Academic Press, London, 596 pp. Audrews, P. J. and Cronin, J. E. (1982) The relationships of Sivapithecus and Ramapithecus and the evolution of the orang-utan, Nature 297, 541-546.

- necember 1990 Beynon, A. D. and Dean, M. C. (1988) Distinct dental devolopment patterns
- in early fossil hominids. American Journal of Physical Anthropology 63, 23-27, Bowcock, A. M., Kidd, J. R. and Mountain, J. L. (1991) Drift, admixture, and selection in human evolution: a study with DNA polymorphisms.
- Proceedings of the National Academy of Sciences of the U.S.A. 85, 839.843. Box, H. O. (1991) Primate responses to environmental change. Chapman and
- Hall, London. 442 pp. Brauer, G. and Smith, F. H. (1992) Continuity or replacement? Controversies
- In: Homo sapiens evolution. Balkema, Rotterdam. 315 pp. Cann, R. L., Stoneking, M. and Wilson, A. C. (1987) Mitochondrial DNA and human evolution. Nature 325, 31-36.
- Cavalli-Sforza, L. L., Piazza, A., Menozzi, P. and Mountain, J. (1988) Reconstruction of human evolution; bringing together genetic, archeological, and linguistic data. Proceedings of the National Academy of Sciences of the U.S.A. 85, 6002-6006.
- Chamberlain, A. T. (1989) Variations within Homo habilis. pp. 175-181. In: Hominidae. Jaca, Milan,
- Chamberlain, A. T. and Wood, B. A. (1987) Early hominid phylogeny. Journal of Human Evolution 16, 119-133. Darwin, C. R. (1859) On the origin of species by means of natural selection or
- the preservation of favoured races in the struggle for life. Murray, London, 490 nn. Darwin, C. R. (1871) The descent of man and selection in relation to sex.
- Murray, London. Day, M. H. (1986) Bipedalism: pressures, origins and modes. pp. 188-202. In: Major topics in primate and human evolution. Cambridge University
- Press. Cambridge. Delson, E. (1987) Evolution and palaeobiology of robust Australopithecus, Nature 327, 654-655.
- Excoffier, L. and Langaney, A. (1989) Origin and differentiation of human mito-
- chondrial DNA, American Journal of Genetics 44, 73 85. Foley, R. A. and Lee, P. C. (1989) Finite social space, evolutionary pathways,
- and reconstructing hominid behaviour, Science 243, 901 906, Godinot, M. and Mahboubi, M. (1992) Earliest known simian primate found in
- Algeria, Nature 357, 324 326. Goldman, D., Giri, P. R. and O'Brien, S. J. (1987) A molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis. Proceedings of the National Academy of Sciences of the

U.S.A. 84 3307 - 3311.

Gould, S.J. and Vrba, E. S. (1982) Exaptation - a missing term in the science of form. Paleobiology 8, 4-15,

Greenfield, L. O. (1979) On the adaptive pattern of "Ramapitheous". American Journal of physical Anthropology 50, 527 - 548. Harcourt, C. (1990) Lemurs of Madagascar and the Comoros, International

Union for the Conservation of Nature, Cambridge, 240 pp.

Harris, J. W. K. (1986) Decouverte de materiel archeylogique Oldowayen dans le rift de l'Afar. L'Anthropologie 90, 339 -357. Hill, A. and Ward, S. (1988) Origin of the Hominidae: the record of African

large hominoid evolution between 14 My and 4 My. Yearbook of Physical Anthropology 31, 49 - 83, Hoffstetter, R. (1974) Phylogeny and geographical deployment of the primates.

Journal of Human Evolution 3, 327 - 350. Howell, F. C., Haesaerts, P. and de Heinzelin, J. (1987) Depositional environments.

archeological occurrences and hominids from Members E and F of the Shungura Formation (Omo basin, Ethiopia). Journal of Human Evolution 16, 665 - 700.

Jaanusson, V. (1991) Morphological changes leading to bipedalism. Lethala 24, 443 - 457.

Jeffreys, A. J. (1989) Molecular biology and human evolution pp. 27 - 52. In: Human Origins. Clarendon Press, Oxford.

Kappelman, J., Kelley, J. and Pilbeam, D., (1991) The earliest occurrence of Sivapithecus from the middle Miocene Chinji Formation of Pakistan. Journal of Human Evolution 21, 61-73.

Kortlandt, A. (1980) How might hominids have defended thomselves against large predators and food competitors? Journal of Human Evolution 9,

Leakey, R. E. and Leakey, M. G. (1986) A new Miocene hominoid from Kenya-Nature 324, 143 - 148.

Li, W. H. and Tanimura, M. (1987) The molecular clock runs more slowly in

man than in apes and monkeys. Nature 326, 93-96, Lieberman, D. E., Pilbeam., D. R. and Wood, B. A. (1988) A probabilistic approach to the problem of sexual dimorphism in Homo habilis: a com-

parison of KNM - ER 1470 and KNM - ER 1813. Journal of Human Evolution 17, 503 - 511.

Long, J. C., Chakravarti, A. and Boehm, C. D. (1990) Phylogeny of human beta - globin haplotypes and its implications for recent human evolution-American Journal of Physical Anthropology 81, 113-130,

- Maddison, D. R. (1991) African origin of human mitochondrial DNA seexamined. Systematic Zoology 40, 355-363.
- Martin, R. D. (1990) Primate origins and evolution; a phylogenetic reconstruction, Chapman and Hall, London 804 pp.
- Marzke, M. W. (1986) Tool use and the evolution of hominid hands and bipedality pp. 203 - 209. In: Primate evolution. Cambridge University Press, Cambridge.
- Mellars, P. and Stringer, C. (1989) The human revolution. Edinburgh University Press. Edinburgh, 800 pp.
- Miyamoto, M. M. and Goodman, M. (1990) DNA systematics and evolution of primates. Annual Review of Ecology and Systematics 21, 197 - 220.
- Pickford, M. (1986) Geochronology of the Homimoides: a summary, pp. 123 125. In: Primate evolution. Cambridge University Press, Cambridge.
- Pilbeam, D. R. (1972) The ascent of man; an introduction to human evolution. Macmillan, New York. 207 pp.
- Rightmire, G. P. (1990) The evolution of Homo erectus. Cambridge University Press, Cambridge, 260 pp.
- Rodman, P. S. and McHenry, H. M. (1980) Binenergetics and the origin of hominid bipedalism. American Journal of Province anthropotogy 52, 105-106.
 - Sinclair, A. R. E., Leakey, M. D. & Nomos-Griffiths, M. (1986) Migration and hominid bipedatism. Name 324, 307 - 306.
 - Spuhler, J. N. (1988) Evolution of mirochondrus DNs in monkeys, and humans. Yearbook of Physical antirophology 31, 15-46.
 - Stringer, C. (1984) Human evolution and biological adaptation in the Disistration. pp. 55 - 83. In Hominis and one and community renters. Academic Press, London.
 - Susman, R. L., (1988) Hand of Paranchores.
 - Susman, R. L., Stern, J. T. and Jungers. W. L. Stern & Susmanilly and Susmanilly and the Hadar hominids. Falls Proposition of 111. %
 - Szalay, F. S. and Delson, E. (1979) Evolutions here a the arimote Amelianic
 - Press, New York. 580 pp. Thorne, A. G. and Wolpoff, M. H. (1997) The manufacture of minutes of minutes Scientific American, April, 28 . 33.

Tobias, P. V. (1991) Oldural Gorge, Volume 4. The skulls, endocasts and teeth of Homo habilis. Cambridge University Press, Cambridge. 921 pp.

Vigilant, L., Pennington, R., Harpending, H., Kocher, T. D. and Wilson, A. C. (1989) Mitochondrial DNA sequences in single hairs from a southern African population. Proceedings of the National Academy of Sciences of the U.S.A., 86, 9350 - 9334

Ward, S. C. and Pleam, D. R. (1983) Maxillofacial morphology of Miocene hominoids from Africa and Pakistan. pp. 211-238. In: New Interpretations in ape and human ancestry, Plenum, New York.

Wheeler, P. E. (1984) The evolution of bipedality and the loss of functional body hair in hominids. Journal of Human Evolution 13, 91-98.

Wheeler, P. E. (1991a) The thermoregulatory advantages of hominid bipedalism in open equatorial environments: the contribution of increased convective heat loss and cutaneous evaporative cooling. Journal of Human Evolution

Wheeler, P. E. (1991b) The influence of bipedalism on the energy and water

budgets of early hominids. Journal of Human Evolution 21, 117-136.
White, T.D. (1986) Australoptihecus afarensis and the Lothagam mandible.

Anthropor (Brno), 23, 79-90.

Wood, B. A. (1991) Koobi Fora Research Project, Vulume 4. Hominid cranial remains. Clarendon Press, Oxford. 466 pp.

het dek verstegt in 1966 bistromer in Große er est til fild til e

Received for publication May 1989.

A state of the state of the state of the

one en la completa de la completa del la completa de la completa de la completa del la completa de la completa de la completa del la

[45] S. W. D. Mary E. (1954) Institutions on any of the indicators. A submission Prices New York: 80 pp.

D. S. Japh Berten Vent. 28 . S.

மார்கழி 1990

Periodicals Division
Library

விஞ்ஞானம்

வில்கான சல்சிகை

' எஞ்ஞவலம்' இதற் 5 (1-ம், 3-ம் வெளியீடு) ஆனது இதற் 4 வெளியந்த ஆறு மாதம்களின் பின் வெளியீடப்படுகிறது. 1990ம் ஆன்று வெளியர வேண்டிய இவ்விதழ் ஒறு வருடம் காளதாகதாகியுள்ள மோதியும், படிப்படியாக 'விஞ்ஞனம்) இதற் ஓவ்வொன்றும் அதற்குளிய ஆண்டிக் வெளியரும் என தம்பிக்கை கொண்டுள்

இரன்டு கட்டுவரகள் வாழ்ப்பான ஆடாதாட்டுப் நீரசிலைகலைப் பற்றியகை. களாவிற வாகிரட்டியத்த, K. தெப்போத்தராஜா அப்போக்கு கட்டுகை வாவுற் வகைவில் கிறப்பக்களைக் குறிக்கும், N. செல்லராஜா, வனதா இராஜ ரட்டை ஆகியோக்க் கட்டுக்கு இரன்டு தந்காவிக தன்னிக் குலங்களில் தன்னியகை வீய்கிலின் நடி

G.F. இராசேந்திரம் நேற்பவிர்ப்பிடையான கபிவநிறத் தத்தியை கபிரிப4 முறை பின் கட்டுப்படுத்தும் Cyrtorians Indipensis இனுடைய ஆப்வுகட வளர்ப்பு முறையை விபரிக்கிறார்.

K. கந்தசாமி உனோகங்களிக் (Pd) அமல்கச் சங்வின் ஐதரசன் பரவல் மேவான கண்டுபிடிப்புகளை வெளிப்படுத்துகின்றார்.

இல்லொத்திலுள்ள செபி(நிட் பல்கலைக் கழகத்தைச் சேர்த்த அன்று T. செம்பலின் மலித கூர்க்கான ஆதாரக்களை மீனாவ்வு செய்யின்றாச். இங்கிடயம் கூல காலத்துக்குருள் மாழ் பக்கலைக் சுழக்தில் நடந்த ஒரு சுருத்தாள்கில் விவாடுக்கப் பட்டது. இதை நாங்கள் வருமேறிகில்றோம்.

மார்கழி 1991 ஆகியே

இதழ் 5

Vingnanam - Journal of Science Vol. 5, Nos. 1 & 2

December 1990

Vingnanam J. Sci. 5 (1990) இழ்விதழ் கட்டுரைகளின் சுருக்கங்கள்

யாழ் குடாநாட்டில் நான்கு வாழை இனங்களைப்பற்றிய சில படிப்புகள்

ஆரிரீயர்கள்: கலநவடு கனகரத்தினம் & K. தெய்வேந்திரராஜா

(தாவரவியம் பிடம், மாழ் பல்கணைக்கழகம், வாழ்ப்பாணம், இவக்கை.) Vinenanam J. Sci. 5: 1—6.

குறுக்கம் :

யாற் குடாதாட்டில் சாதாராவாக பகிரப்படும் 4 வாவு இலங்களாயே தகி. மப்பி, பொத்தில், இதன என்பலைந்திய பதப்பிகிழும் வாவுகில் உயரம், இவை களில் என்பிக்கை [தாவரம், நாக்கு வாவை இவங்களிடைப் பொருகுக்க வேற பாட்டைக் காட்டக்கை என அரியப்பட்ட, வேறபடாகு பிக்குவையத்தில் காணப்பட்டத், குகையின் தாவ், கிப்புகளில் என்பாக்கை [குகை, மொத்த வாவதுக் களிக்கில் என்பகிகை [கைவு மற்ற அரிதுக்கு எனம், கதிக் படியி விளகை (மொத்த களிகில் என்பாகிகை [கைவு) செருவிறது. பகுத்த களிக்கில் வெக்க குறுவிறதுக்கு இருக்கியத்தில் இருக்கு இருக்கு மானும் அருக்கவும் அரிய துறுவிறதுக்கும் இருக்கியத்தில் இருக்கு மானும் சுறுவரும் அருக்கும் இருக்கு அருவில் அரிக்கும் செலியில் இருக்கும் செலுவிறது.

இலங்கை, யாழ்ப்பாணக் குடாநாட்டிலுள்ள இரு கற்கால குளங்களின் நன்னீரியல்

ஆகியக்கள்: N. செல்வராசா & வளதா இராஜரெட்டினம் (சிலக்கெல் குறை, வாழ் பக்கலைக் கழகக், வாழ்ப்பாணம், இலல்கை) Vingnanam J. Sci. 5:7—13. நைக்கம்:

இலங்கையின் வடபிராந்தியத்தில், யாழ்ப்பானக் குடாநாட்டிலுள்ள, நீகம் குனம், ஆய்யுகுளம் எனப் பெயர்கொண்ட தந்காலிக் குனம்களின் நன்னியறுக்குள்ய ஆப்வு மேற்கொள்ளப்பட்டது. இப்பகுதி யாள்கழ் யாதல்களில் வட கிழ் பகுவ மழையைப் பெறுவதால் அக்காவம் ''மனநக்காவந்'' என அம்பர் மிறக்

பெறுவதாக அக்காவம் "மறைத் காரகழ் மாதல்களில் வட ஃழ் பருவ மறைவப் பெறுவதாக அக்காவம் "மறைத்காவம்" என அறிவப்படுகிறது. இவ்விரு குளல்களில் குறிய குளமானது வறன்ட காலங்களில் முற்றாக வற்றும் நல்றைய நீகல் சூளமானது வருடம் முழுவதும் வடிநீர் வழல்கப்படுவதால் வற்றுவடுக்கல.

மற்கதாம் நிகம் குளமானது வருடம் முழுவதும் வடிநிர் வழல்கப்படுவதால் வற்றுவநில்ல. இவ்வாய்வு இக்குளங்களின் தொடக்க திரம்பதுவன் ஆரம்பிக்கப்பட்டு, அவற்றில் அன் எனவான அல்லது முற்றான வற்றதுடன் முடிவெடுகப்பட்டது.

இவ்வாய்வுக்காறத்தின்போது அமேகமாக அவதானிக்கப்பட்ட தாவர அமைவுயிர் தனான குளோரோடைகியே அலையுபிர்களும் விலங்கு அலையுபிர்களான பெஸ்தேடியா, புரோட்டோசோவா என்பனவும் இரு குனங்களிலும் காணப்பட்ட போறிலும், இரசா யனக் காரணிகளான தைதரசன், ஒட்சென், உவர்த்தன்மை, பி. ஏச் என்**பவ**ற்றி**ல்** இரு குளங்களிடைபேயும் பெருமனவு வேறுபாடு காணப்பட்டது. இவை நிகல் குனத்தில் சுடு தலாகக் காணப்பட்டதன் காரணம் கழிவுதிர் இங்கு சேர்க்கப்பட்டமையேயாகும்.

Cyrtorhinus lividipennis (Hemiptera : Miridae) இன் ஆய்வுகூட வளர்ப்புமுறை

அசியர்கள்:

G. F. இராறேந்தேரம், பிராண்டுஸ்கா R. நேவராஜா (விலக்கியக் அறை, யாழ் பக்களைக்கழகம், வாழ்ப்பாணம், இவற்கை) Vingnanam J. Sci. 5: 14-21. மகைகம்:

Cyrtorhinus lividipennis இன் ஆப்வுகூட வளர்ப்புமுறை மூன்றுவகைக் கடுகளில் ஒப்பிடப்பட்டுள்ளது. செயினி கூடு மேன் இரப்பர் கூடு, 30×25×25 cm, பெரிய மரக்கூடு, 105×75×60 cm, கியினி கூட்டில் உள்ள C. Ividipennis வளர்ப்புகள் முதல் சந்தடு லில், ஆரம்ப சனத்தொகையின் 79.2% ந்த குறைந்தது. மரக்டைப்புக் உள்ள சனத்தொகை ஏழுமாத கால இடைவேளையில் 200% வளர்வு அடுகரிப்பைக் காட் டியது. மென்ரப்பர் கடு அதிக வெற்றியுள்ளதாக 300% இல் இருந்து 500% வீச்சு அடுகிப்புடையதாக இருந்தது. மென்ரப்பர் கடு அடிக பொருளாதாரமுடையதாக வும் கையாளச் கலபமாகவும் இருந்தது. C. Fridigennis நிறைவுடலிப் பெரிகல் 4 — 6 கிழமை வயதுடைய தெற்தாவரங்களின் முடுர்ந்த தண்டுகளில் மட்டுமே முட்டை ulti a cor.

பலேடிய (Pd) அமல்கச் சவ்வில் தகைப்பால் தூண்டப்பட்ட ஐதரச னின் பரவல்

அசிரியர்:

K. sitasna Vinenanam J. Sci. 5: 22-29.

ஈருக்கம்:

மெல்லிய தகடுபோன்ற வடிவிகையத்த சல்வினூடு ஐதரசனின் பரவற் பாயத்திற் கான சமன்பாடொன்ற பெறப்பட்டுள்ளது. தூன்டிய மீன் சத்திப் புறையான்றினால் பரவற் பாயத்தில் ஏற்படும் விணைவு காண்டுக்கப்பட்டுள்ளது. சூகரிக்கப்பட்ட பலிசோ தனை முடிவுகளின்றும் இந்த வியிக்கப்பட்ட அறிமறையின்றும் ஒப்பிடுகை நூப்பட் இன்னது .

Vingnanam - Journal of Science 46 Vol. 5. Nos. 1 & 2

மனிக கூர்ப்பிற்கான சான்றுகள் அசிரியர்:

அன்ன T. சேம்பளின் (புகைபொருள் அராய்ச்சி, ஆரம்ப சரித்திரத்துறை, செபி (F) ஸ்ட் பல்களைக்கமுகம்.

செபி (F) ஸ்ட், இங்கினாத்து)

Vingnanam J. Sci. 5: 30-42.

அருக்கம் : இக்கட்டுரையில், மனித கூர்ப்பிற்கான சான்றுகளின் பிரதான காரணிகள் மின்

ஆராயப்படுகேன்றன. ஆரம்ப சேனோசொயிக் காலத்தில், பிறைமேற்றாக்கள் கூலக்கின்

வழித்தோன் றக்களிலிருந்து வேறுபாடடையும் அமைப்பானது, உலிர்ச்சவட்டு, உலிர் வாழ் இழுந்தன் இரண்டின் உருவலிய அக்கான சான்றுகளையும் உயிர் மூலக்கறு ஒத்த தன்மை அளவிடுகளின் சான்றுக_்னயும் பயன்படுத்தியே, மீன்அமைக்கப்படுடுள்ளக ஹோமினிடாக்கள், உயிர்வாழ் ஆபிரிக்க வாவில்லாக் குரங்குகளுடன் பங்கிடு செய்யும் ஒரு பொது முதாதையர்விருந்து உர்ப்படைந்தவை, பினியோசீன் முமுவடுலும் அதின் ஃழான பெருமனவான பிவிஸ்ரோசீவி ஆம் ஹோமிவிடாக்கள் உற்பத்தியான கண்டத்கில் வாம்மெ றன. அரம்ப, இனங்காணக்கூடிய உறிர்ச்சுவட்டு ஹோமினிடாக்கள், 6 மில்லியன் வருடத் துத்துள்ளானவை. எமது இனமாகிய (உடவைபட்டுயல் நவீன "Homo sapiens") கடத்த வெ தரதாயிரம் அண்டுகளியேயே பெரும்பாலும் உற்பத்தியாவின. விற்தை யான ஹோயின்டாக்களின் உற்பத்தியைப் பற்றிய நனின கருதுகோள்கள் இருபாத வியவுக்கரிய இசைவாக்கு கூர்ப்பை தொடர்புபடுத்தியே விவாடுக்கப்படுகின்றன.

Instructions to Contributors

GENERAL

Submission of a manuscript to the editor involves the assurance that it is original and that no similar paper, other than an abstract, has been or will be submitted for publication elsewhere without the consent of the Editorial Board.

Research papers from original investigations and reviews which are critical evaluations of existing knowledge in a specialised field are accepted for editorial consideration. Short communications of sufficient importance to merit publication in advance of a full paper are also accepted by the journal.

The language of publication is English. A translation of the abstract in swabsish should be submitted with the manuscript. Every paper will be referred to at least one eferce familiar with the field of research covered by the paper, who will be nominated by the Editorial Board. Papers are edited to inorease clarity and case of communication.

PREPARATION OF MANUSCRIPTS

No restriction is laid on the length of the manuscript, provided it is written clearly and concisely. All unnecessary descriptions, figures and tables must be eliminated. The impersonal form should be used in the text.

The style of setting out, sub-division of text and lay out of tables in the manuscripts should in general be organised in the form adopted in this issue.

Manuscripts should be submitted in triplicate including the original typewritten copy, typed throughout in double spacing on one side of the paper only. Adequate margins (4 cm) should be left with liberal spacing at the top and bottom of each page. The typescript should be free of corrections.

Each page of the manuscript should be numbered in the upper right hand corper. The title page should include the name and mailing address of the author to whom the proofs should be sent, a proposed running title of not more than four words and short list of key words to be used in rapid scanning of the coetents of the manuscript. The last page should contain a not indicating the number of manuscript pages, figures and tables.

ILLUSTRATIONS

All illustrations are considered as figures and each graph, drawing or photograph should be numbered in sequence with Arabic numerals. Authors must submit the original and two duplicates of each figure. Figures should be planned to fit

the original and two duplicates of each figure. Figures should be planned to fit the proportions of the printed page. The maximum space available on a page is 140×190 mm. the same in the text as in the reference list. In the text refer to the author's name (without initial) and year of publication, followed, if necessary, by a short re-"This is in agreement with results obtained later (Kramer, 1969, pp. 12-16)". If reference is made in the text to publications written by more than two authors. the name of the first author should be used, followed by "et al.". This indication, however, should never be used in the list of references, where the name of authors and co-authors should be mentioned instead. The list of references should be arranged alphabetically on authors' names, and chronologically per author. If an author's name in the list is also mentioned with co-authors, the following order should be used. Publications of the single author, arranged according to publication dates, publications of the same author with one co-author and publications of the author with more than one co-author. Use the following system:

TOTTR NAT.

Selman, I. W. and Kulasegaram, S. (1967) Development of the stem tuber in Kohlrabi. Journal of Experimental Botany, 18, 471 - 490. Journal name should not be abbreviated. BOOK

Slatver. R. O. (1967) Plant Water Relationships. Academic Press, London, 366 pp.

SECTIONS OF BOOK Skoog, F. and Miller, C.O. (1957) Chemical regulation of growth and organ

formation in plant tissue cultured in Vitro. pp. 118-131. In: Symposia for the Society of Experimental Biology XI. The Biological action of growth substances. University Press, Cambridge,

In referring to a personal communication the two words are followed by the vear, e.g. (J. McNary, personal communication, 1968).

CROSS-REFERENCES

The cross reference cannot be finally inserted until the page proof is available. Type them: "see page OOO". In the margin pencil the page number of the cross reference in the manuscrint.

FORMULAE

Formulae should be typewritten, if possible, leaving ample space around the formulae, Subscripts and superscripts should be set off clearly. Greek letters and other non-Latin or handwritten symbols should be explained in the margin when they are first used. Take special care to clearly show the difference between zero (O) and the letter O, and between one (I) and the letter I. Give the meaning of all symbols immediately after the equation in which they are first used. For simple fractions use the solidus (/) instead of a horizontal line.

Figures must be drawn in Indian ink on plain white paper or board tracing poper, not larget than twice the linear dimensions desired. Drawings should be lettered with a lettering set: lettering should be kept large enough to be clearly legible after a reduction of 50 to 69%; if this is not possible all letters and numerals must be insurted clearly and lightly in blue pencil and not in ink. Wherever possible small tipser should be grouped to fill a page.

Each figure should carry a legend so written that the general meaning of each illustration can be understood without reference to the text. The amount of lettering on drawing should be reduced as far as possible by transferring it to the legend. Figure legends should be typed on a separate sheet and placed or the end of the manuscript.

at the end of the manuscript.

Graphs should be plotted on white or bluelined graph paper or tracing cloth; grid lines that are to be shown in the engraving should be inked in black. The caption of each axis should be lettered parallel to its axis. Each figure should be identified in the margin with figure number. The preferred position of all illustrations should be indicated in pencil in the manuscript.

PHOTOGRAPHS

Good glossy prints with sharp contrasts between black and white areas should accompany the manuscripts. The size should be such that when the print is reduced to the normal size for reproduction $(140 \times 190 \text{ nm} \text{ maximum})$ the detail is still clear. Magnification should be indicated with a scale line on the hotorath. Figure number should be given on the back of each photograph.

TABLES

Tables should not repeat data which are available eliewhere in the paperfishen thate should be typed on a separate scheet with dar ergard for the propertions of the printed page. They should be numbered consecutively with Arabic mereals, Tableshould ensiter should be clearly set out and the number of columns in each stable laget an lower possible. Take no the text and all table columns in each stable laget an lower possible. The one to the text and all table columns should have explanatory bendings. Units of measures should be indicated in parentheses in the heading of each column. Vertical lines should not be used and protocolar levels used only in the bending and at the bottom. Footones to the tables are to be placed directly below the table. Enable the columns of tables should be indicated in possible of table

REFERENCES

All references to publications made in the text should be presented in a list of references following after the text of the manuscripts. The manuscripts should be carefully checked to ensure that the spelling of authors names and dates are exactly

e.g.:
$$1p/2_m$$
 rather than $\frac{1}{2}$.

Parentheses and square brackers are preferred in formulae. Accorded should be used only when they are absolutely accessary. Equations is avoid be numbered serially in the right-hand side and in parenthese only equations are not as the serial parenth and the serial parenth serial parenth of root signs is recommended. Also power of e are often more conveniently do noted by exp. In the chemical formulae, valence of ions should be given as

c.g. Ca and CO₃ not as Ca or CO₃. Isotope numbers should precede

the symbols, e.g. 19O. Use of superscripts added to superscripts and subscripts added to subscripts should be avoided, if possible.

SHORT COMMUNICATION The Journal may include a limited number of short communications.

Authors should submit short communications only when they believe that rapid publication of their result is of the utmost importance. A short communication must not exceed 1200 words, should be complete in its own right and suitable for citation.

PROOFS

Corrected galley proofs must be returned to the editor without delay, Failure to do so will result in delay in publication. Correction of proofs by authors must be restricted to the printer's and similar error. They should be marked in pecial. Any modification of the original text is to be avoided. Respossibility for correcting proofs rests entirely on the authors though editorial sestions will be recovided.

REPRINTS

Twenty reprints will be supplied free of charge for each article. Additional reprints can be ordered on the reprint order form which will accompany the proof.

VINGNANAM

Numbers 1 & 2

27

JOURNAL OF SCIENCE

Volume 4

Abstracts in Tamil

CONTENTS

Diffusion of Hydrogen in Metals.

K. KANDASAMY

A Study of the Free Amino Acids present in Leaves of Papaya (Carica papaya L.) varieties infected with Papaya Monaic Disease.

R. V. S. SUNDARESAN and PATEMASANY VARATHARAJAH

Biology of Peridomentic Monquito Species of Jaffina Peninsula.

G. F. RAIENDRAM, NIRWALA R. ANTONY and

ROHINI NAGALINGAM

14

STRUCK OEL Electrophoresis of Engineers of Nephaenite reseases (Homopters : Cincidelidate) populations from India, Sri Lanka and the Palitypinee.

Some Observations on the Powdery Mildew Disease of Scame

Instructions to Contributors

(Sesamum indicum L.). JEYADEVI KAILAYAPILLAI, A. SIVAPALAN and K. THEIVENDIRARAJAH

VINGNANAM

JOURNAL OF SCIENCE

Volume	5	December	1990	27	Numbers	1 &

CONTENTS

- Studies on Four Cultivars of Banana in the Jaffna Peninsula, Sri Lanka.

 KALAWATHY KANAGARATNAM and

 K. THEIVEN DIRARAJAH
- Limnology of Two Temporary Ponds in the Jaffna Penninsula, Sri Lanka.

 N. SELVARAJAH and VANAJA RAJARATNAM
- Laboratory Rearing of Cyrtorhinus lividipennis (Hemiptera: Miridae).

 G. F. RAJENDRAM and FRANCESCA R. DEVARAJAH
- Strain Induced Diffusion of Hydrogen in Pd Alloy Membranes.

 K. KANDASAMY
- The Evidence for Human Evolution (A Review).

 ANDREW T. CHAMBERLAIN
- Abstracts in Tamil