DECEMBER 198

HME 3

NUMBERS 182

VINGNANAM JOIRNAL OF SCIENCE

Dublished by

THE SCIENCE FACULTY
UNIVERSITY OF JAFFN

VINGNANAM JOURNAL OF SCIENCE

Editorial Board: S. KANDIAH (Chief Editor), M. R. R. HOOLE, R. KUMARA-VADIVEL, S. MAGESWAKAN, S. MOHANADAS, G. F. RAJENDRAM (Associate Editors).

VINGNANAM - JOURNAL OF SCIENCE is a semi-annual journal devoted to the publication of original research papers and review articles in all fields of science and technology. Authors are entirely responsible for statements and opinion expressed.

The abbreviated title of this journal shall be Vingnanam J. Sci.

SUBSCRIPTIONS:

Annual subscription: Foreign \$ 20-00; Local Rs. 40-00 Single number: Foreign \$ 10-00; Local Rs. 20-00

Subscription includes postage.

Cheques should be drawn in favour of Bursar, University of Jaffna.

MANUSCRIPTS:

Manuscripts and related correspondence should be sent to Prof. S. KANDIAH, CHIEF EDITOR, VINGRANAM—JOURNAL OF SCIENCE, Department of Botany, University of Jaffaa, Thirunelvely, Jaffaa, Sri Lanka, Authors are urged to read 'Instructions to Contributor's printed at the end of this issue before preparing the manuscript.

COPYRIGHT

All rights are strictly reserved. No part of this journal may be copied, translate photographed, broadcast, televised or otherwise disseminated without the prior written permissed of the Dean, Faculty of Science, University of diaffins, Sri Lanks.

PUBLISHED BY THE

SCIENCE FACULTY OF THE UNIVERSITY OF JAFFNA THIRUNELVELY, JAFFNA,

SRI LANKA.

DECEMBER 1988

VOLUME 3

NUMBERS 1 & 2

VINGNANAM

JOURNAL OF SCIENCE

Published by

THE SCIENCE FACULTY
UNIVERSITY OF JAFFNA
SRI LANKA

MAIN HEIT

11/4 | 1 | V | 2 | M | 1 | 1 | M | 1 |

VOLUME 3

NUMBERS 1 & 2

VINGNANAM

Journal of Science

Publication of Volume 3 is delayed due to circumstances beyond our control and, once again, two numbers had to be combined.

As in previous volumes, in this volume too the papers published deal mostly with regional problems.

Control of pests and diseases constitute a substantial component of the cost of production of our agricultural products. Six out of the seven papers published in this volume are related to research in this field.

The papers by Niranjani Ramanathan and Sivapalan deal with appropriate use of fungicides for the control of a common leaf disease of coloni it laffan, In a second paper she has published her findings on the effect of environmental factors on the development of the down milder disease of grape vine, which poses a serious problem to the grape cultivators in Jaffan.

Padmini Maheswaran and Ganesalingam have provided interesting information on the insecticidal properties of sceds been (margosa) which should provide interesting reading to people inclined to organic farming.

Egg development in pests form the subject of two papers. Rajendram and Rajani Rajeswaran describe egg development in a local rice pest. In another paper Sagunthaladevej Ambikaipakan and Ganesaliapam report the effect of centifugation on egg development in an insect pest.

Rajendram with Annette Gunasingam has a second paper on symbiotes in a Sri Lankan rice pest.

Climotology nowadoys is a subject of interest to many scientists from diverse disciplines. Purvnes,waran's paper deals with this subject. Many years of meteorological records had been seamed to provide a picture of host stress over Sri Lanka, which should be helpful for a rational characterisation of articles in our counter.

Prof. S. Kandiah, Chief Editor

VINGNANAM

Volume 3

Abstracts in Tamil

Instructions to Contributors

JOURNAL OF SCIENCE

CONTENTS

CONTENTS

Laboratory Studies on the effects of Environmental conditions and Fungicides on the Development of Alternatic alternatic (Fr.)Keissler. NIRANJANI RAMANATHAN and A. SIWAPALAN

Some Field Observations on the Epidemiology of Downy Middew Disease of Grace Vine. NIRANJANI RAMANATHAN RAMANATHAN

OF Grace Vine. NIRANJANIAN RAMANATHAN

Numbers 1 & 2

20
27
31
38
38
42

Mad/ for

Single to the eff

Laterbook 191 above

2005-26

has implicated temperatured by a 12% and appropriate and of the property of th

Provide Peliel to produce the same and accompany of the Control of

to some some and the source of the source of

soften China Severa a fine the first several man of the control of

terrors rivating to temperate and proof also trees to the book to the temperature of a selection of the temperature of temperature of temperature of temperature of temperature of tempe

THE TOP INCIDENT AND A WIND THE PROPERTY OF TH

Protection Residence Character Appropriate Character Cha

LABORATORY STUDIES ON THE EFFECTS OF ENVIRONMENTAL CONDITIONS AND FUNGICIDES ON THE DEVELOPMENT OF ALTERNARIA ALTERNATA (FR.) KEISSLER

NIRANJANI RAMANATHAN & A. SIVAPALANI

(Department of Botany, University of Jaffna, Jaffna.)

Vingnanam - Journal of Science 3: 1-9 (1988)

ABSTRACT: Field observations indicated that Alternatic elements was constantly associated with sensencel leaves of onlow with a possible of causing enhanced leaf sensecence. This fungus was isolated and found to have a temperature optimum of 29°C for generation of confinish and to 20°C, relative humbility. However, the growth of mycolium was better at 39°C than at 29°C.

The effects of 2 systemic fungicides (benomy and bayco) and on-systemic fungicides (cuprant, morestan, pomarso), sulphur, brassicol, morut, antracol, difelatan and decent) at concentrations renging from 0—1000 pms on the germination of conditis and mycellal growth rate of the fungus, under laboratory conditions, were investigated. All fungicides except cuprant limibility germination at 10 ppm.

The fungus responded differently to the various fungities in its uncleils growth rate. Diffelials, decoed, benong and pomeror related mycellal growth at concentrations between 19 and 500 ppm and prevented growth completing at 1000 ppm. Movertas, beautions, most, bayor and natracel inhibited growth remarkably at concentrations to the decomposition of the property o

The fungus was usually killed on media containing deconil, benomy!

This investigation provides evidence that benomyl, deconil and pomarsol could be used to control Alternatia alternata-

Introduction

Alternaria alternate (Fr.) Keissler, predominates the pathogens which infect onion scale leaves and cause early leaf senescence. Observation of onion (dilum cepa L.) cultivated in Jaffins suggested that the disease caused by this particular fungus was severe after periods of rain.

Disease symptoms appear as blackish brown patches of sporalating structures at the tips of mature scale leaves of onion. Soon they spread down the leaves and cause premature leaf senecence. The photosynthetic area of the onion plants appears to be reduced.

Present address: Department of Biology, University of British Gayana, Guyana.

This pathogenic fungus is a parasite belonging to the group Fungi Lnge, fecti. The hypha of the fungus, which is dark and pigmented, products dark condidophores; these bear chains of condida in an acropetal manner. Condita are dark, obclavate to elliptical and muriformed.

Field observations on the severity of the disease under conditions of low temperature and high relative humidity indicated the need for the study of the effects of environmental conditions and fungicides on the development of dilemental alternata.

Materials and Methods

Source of inoculum

Infected onion scale leaves were collected from the field, surface strillage and then cut into pieces 3 on in length. A thick conditial suspecsion was prepared by shaking the infected pieces with sterile distilled water is a McCartary bettle, under asceptic conditions. The source of incolumn that prepared was diluted to give a concentration of 4.8×10° condid per ml and was used throughout the experiment.

Method of inoculation

To study the germination of condida under varying temperature in municipy conditions and to evaluate the effects of different finagistics on this clams sterile cavity sildes were used as the substrata. The cavity sildes were used as the substrata. The cavity sildes were used as the substrata. The cavity sildes were taped over the substrate of t

The effect of temperature on conidial germination and initial growth of germ tube was studied at 10°, 15°, 20°, 25° and 30°C and the mean percentage germination of conidia and mean length of germ tube were measured after 2th and 48 h of incubation.

For the experiment on the effect of relative humidity on the germination and initial growth of germ tube, humidity maintaining solutions were prepared by disting cone, H₂SO₄ as given by Solomon (1969). Inoculated sets of cavity slides were

allowed to air dry and then kept over triangular plates in petri dishes containallowed to an additional maintaining solutions. For 0% and 100% relative humidity, dry CaCl₂ and sterile water replaced sulphuric acid solutions respectively. The dry Cacia and and initial growth of germ tube were measured mean personal at 0%, 3.2%, 37.4%, 70.4%, 93.9% and 100% relative humidity. A control was at up by keeping one set of inoculated cavity slides wet throughout the experiment.

The effects of two systemic fungicides (benomyl and baycor) and nine non-systemic fungicides (cupravit, morestan, pomarsol, sulphur, brassicol, morut, non-system, diffolatan and daconil), which are commonly used by Jaffna farmers, on the germination of conidia at concentrations 0, 10, 100, 500 and 1000 ppm were studied. Sterile cavity slides were inoculated with conidial suspension of the concentration 4.8×10⁵ conidia per ml prepared in fungicide solutions of different concentrations. Mean percentage germination was determined after 24 h of incubation at 25° C and at 100% relative humidity. The rate of growth of mycelia of Alternaria alternata was studied on

Potato Dextrose Agar (PDA). Mycelial discs of about 0.8 cm diameter were cut from pure 6 day old cultures of the fungus, isolated from infected onion plants, with the help of a sterile cork borer and were used to inoculate fresh sterile PDA plates at the centre. Assessment of the rate of growth of mycelia was made by measuring the increase in diameter of the colony after 3, 6 and 9 days of incubation at 25°C. Each treatment was replicated ten times. For experiment on the effect of temperature, the growth rate of the mycelium was measured after incubation at 10°, 15°, 20°, 25° and 30°C.

The effect of fungicides on mycelial growth was studied on PDA plate already incorporated with different fungicides at the concentrations 0, 10, 100, 500 and 1000 ppm. The increase in diameter of the colony on the above plates was measured after 3, 6 and 9 days of incubation at 25°C.

Damite

Effect of temperature on conidial germination and initial growth of germ tube

The mean percentage germination of conidia increased initially with increase in temperature (Fig. 1). Maximum germination occurred between temperatures 20° and 25°C. The value for germination decreased with further increase in temperature above 25°C.

The initial growth of germ tube of germinated conidia varied with temperature in the same manner as in the germination. Optimum growth of germ tube was obtained between 20° and 25°C (Fig. 1). Incubation for 48 h did not have any significant effect on the improvement of germination while it significantly increased the mean length of germ tube.

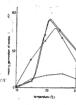


Fig. 1 Effect of temperature on conidial germination and initial growth of germtube of Alternaria alternata, at 100% r. h. after 24 h of incubation

O Mean % germination after 24 h.

• Mean length of germtube after 24 h.

△ Mean % germination after 48 h.

▲ Mean length of germtube after 48 h.

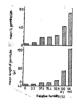


Fig. 2 Effect of relative humidity or conidial germination and initial growth of germtube of Alternatia alternata, at 25°C after 24 to of incubation.

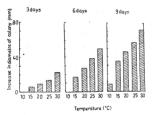
Effect of relative humidity on conidial germination and initial growth of germ tube

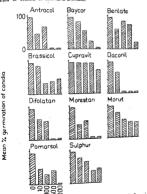
I noculated sets of eavity slides incubated at different relative humidites at 25°C were cannined for germination of condia and growth of germ tube. It was apparent from the results (Fig. 2) that 100% relative humidity was required for successful germination and luxurious growth of germ tube. Presence of fix moisture enhanced germination of conditia as well as the growth of germ tube.

December 1988 Ramanathan & Sivapalan : Laboratory Studies on Alternaria 5

Effect of temperature on mycelial growth

The colony diameter formed on PDA plates increased with increase in temperature (Fig. 3). The growth of the fungus was found to be better at 30°C than at any other temperature used in this experiment.




Fig. 3 Effect of temperature on mycolial growth of Alternaria alternata at 25°C & 100% r. h. after 3, 6 and 9 days of incubation.

Effects of fungicides on conidial germination

Two systemic fungicides and 9 non-systemic fungicides (Table I) which are commonly used by Jaffna farmers were used at the concentrations 10, 100, 500 and 1000 opm.

Table 1: List of fungicides,

	Product name	Active ingredient	Manufacturer o distributor
1.	Antracol (Propineb)	Zine propylene-bis- dithiocarbomate	Haechem Ltd.
2	Baycor	Dimethyl thiophanate	Ciba- Gelgy.
3	Benlate (Benomyl)	Methyl 1-(butyl carbamoyl)	Lankem (Ceylon) L
4,	Cupravit	Copper oxy chloride	Lankem (Ceylon) L
5.	Daconil (chlorothalonil)	Tetrachloro - iso - phthalonitrile	Ciba- Geigy.
6.	Difolatan (captafol)	N (1, 1, 2, 2 tetrachloro ethyl thio 4- cyclo hex - 4-ene) -1, 2 dicarboximide	Ciba- Geigy.
7.	Morestan (quinometh onate)	6 methyl quinoxaline (25%), 2,3 dithiocarbamate (2 -3%)	Haechem Ltd.
8.	Viorut	Feraminosulf +penta- chloronitro benzene	Ciba- Geigy.
9.	Brassicol (quintozene)	Pentachloro nitro benzene	Ciba- Geigy.
10.	Pomarsol (Thiophanate)	1, 2 di (3 -methoxy carbonyl-2 thiordio) benzene	Haechem Ltd.
11.	Sulphur	Inorganic sulphur	Haechem Ltd.

Concentration of fungicide (ppm)

Fig. 4 Effects of fungicides on the germination of Alternatic alternata at 25% & 100%; r. h. after 24h of incubation

Effects of fungicides on mycelial growth

Difolatan, daconil, benlate and pomarsol retarded mycelial growth a concentrations between 10 ppm and 500 ppm. Morestan, brassicol, morut, bayon and antracol retarded growth remarkably at concentrations between 10 ppm and 1000 ppm. Cupravit and sulphur permitted a certain amount of growth throughout the experiment while some fungicides showed stimulatory effects on the radio growth of the fungus at certain low concentrations. The fungus was unusually killed after three days on media containing daconil, benlate or pomarsol (Fig. 5)

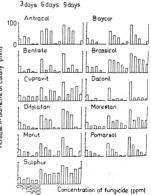


Fig. 5 Effects of fungicides on the mycelial growth of Alternaria alternata at 25°C after 3. 6 and 9 days of incubation

Discussion

Field observations in Jaffna indicated that Alternaria alternata was the cause of premature leaf senescence of onion. The fungus isolated from naturally infected onion plants was identified and found to be similar in cultural and conidial characteristics to the isolate reported by Simmons (1967). However the minor morphological variations may be due to the host environmental effects as described by Elliot (1917). Jimenez & Miller (1966), Grogan et al. (1975) and Misaghi et al. (1979).

The observation that the fungal attack was severe during periods of low temperature and high humidity is in accordance with the earlier reports on the pathogenicity of Alternaria alternata, causing a stem canker on tomato (Grogan et al., 1975) and a leaf blight on Avicennia marina (Chandrashekar & Ball, 1980)

The Isolate of Alternaria alternata obtained from the infected onion plants had a temperature optimum between 20° and 25°C for germination of conidia. However the mycelial growth was better at 30°C than at any other temperature used in this experiment. These observations tally with those reported by Chandrashekar & Ball (1980).

The evaluation of fungicides on permination of conidia and growth of mycelium revealed that daconil, difolatan, benlate and pomarsol could be used to eradicate Alternaria alternata.

References

- Chandrashekar, M. & Ball, M. C. (1980) Leaf blight of grey mangrove in Australia caused by Alternaria alternata. Trans. Br. Mycol. Soc. 75 (3), 413 - 418. Elliot, J. A. (1917) Taxonomic characters of genera Alternaria and Macrosporium.
- American J. of Botany 4, 439 476,
- Grogan, R. G., Kimble, K. A. & Misaghi, I. (1975) A stem cauker disease of tomato caused by Alternaria alternata f. sp. lycopersici, Phytopathology
- 65, 880 886 Jimenez, M. F. & Miller, C. R. (1966) Effect of light on sporulation of Alternaria
- tenuis, Phytopathology 56, 883 (Abstr.). Mauners, J. C. (1966) Assessment of germination, pp. 165 - 174. In The Fungal
- Spore, (ed. M. F. Madelin). Butterworth, London. Misaghi, I. J., Grogan, G. R., Duniway, J. M. & Kimble, K. A. (1978) Influence of environment and culture media on spore germination and morphology of
- Alternaria alternata. Phytopathology 68, 29 34. Simmons, E. G. (1967) Typification of Alternaria, Stemphylium and Ulocladium
- Solomon, M. E. (1952) Control of humidity with potassium hydroxide, sa Mycologia 59, 67 - 72.

 Mycologia 59, 67 - 72.

 mon, M. E. (1952) Control of humidity with potassing hydroxide, suppose of the control of humidity with potassing hydroxide, suppose of the control of humidity with potassing hydroxide, suppose of the control of humidity with potassing hydroxide, suppose of the control of humidity with potassing hydroxide, suppose of humidity with hydroxide hydroxide, suppose of humidity with hydroxide hydroxide, suppose of humidity with hydroxide hyd

NIRANJANI RAMANATHAN

(Department of Botany, University of Jaffna, Sri Lanks.)

Vingnanam - Journal of Science 3: 10 - 19 (1938)

ABSTRACT: Incidence of downy mildew disease on graps vine was recorded during the rainy season or during a high humidity, low temperature weather in the presence of dew in Jaffna peninsula. The infection process was initiated by germination of sporangia and the disease cycle from space landing to space release was completed in 8 days. The mature leaves first developed infections and later formed the source of Inoculum for subsequent infections. The amount of engrangia released in a vineyard was maximum

between 12 noon and 2 pm and was greater in the vertical direction than in the horizontal direction. Maximum capture of sporanola was recorded just below cangoy. The incidence of infection and the dally spore release in the rainy season followed the typical pattern of a growth curve with . four phases. The building-up of inoculum, the establishment of the fungus and the disappearance of the fungus towards the end of the season were dependent on the weather conditions.

Introduction

. The downy mildew disease, the most destructive fungal disease of grape vine (Vitis vinifera L.), is caused by the fungal parasite Plasmopara viticola (Berk A Curt \ Red, & de Toni. The development of the funeus was favoured in a high humidity, low temperature weather in the presence of dew (Ramanathan 6 Sivapalan, 1982). Symptoms first appeared on the mature leaves and later soread to the other leaves and other parts of grape vine. All green parts of the vine such as berries, inflorescences, tendrils and young shoots were affected by this fungus (Romanathan 1985)

The fungus appeared as white downy growth on the lower surface of vine leaves which later became necrotic. All the vineyards in the Jaffna region showed severe defoliation and there was a gradual weakening of the vine plants due to infection. There were instances where the grape cultivation had been completely ahandoned due to severe, yearly attacks of the downy mildew fungus (Ramanathan & Siyanalan, 1988).

Overwintering of the fungus is usually either by preservation of mycelia in the bud scales or by production of oospores which are formed during the sexual reproduction of Plasmopara viticola as reported by Boubals (1977), Gallet (1977), Lafon & Bulit (1981) and Ramanathan (1985). The infection is initiated

at the beginning of the season with the germination of oospores. Inoculum for subsequent infection is supplied by the production of sporangia which are asexual reproductive structures of the fungus. The disease cycle in the field is initiated by air-borne sporangia and is completed in 8 days. Ramanathan 1985) reported that the lesions remain productive upto ten days from the time of appearance

Sporulation of the fungus takes place at temperatures between 20° and 25°C and relative humidities between 95% and 100% (Istanffi, 1914; Ravaz & Verge, 1914; and Lafon & Bulit, 1981). The aerial liberation of sporangia was found to take place only in the presence of moisture while their transport is ensured by wind (Cobaz, 1972).

The present investigation was undertaken to obtain information on the anidemiology and the seasonal occurrence of the downy mildew disease in the Jaffna district in Sri Lanka

Methods

Spore release in field

Capture of sporangia was recorded with the help of spore trap ladders as described by Ramanathan (1985). Five spore trap-ladders were hung either vertically or horizontally in the vineyard for experiments on spore release. Each spore trap-ladder consisted of ten pairs of greased slides (2.5 × 7.5 cm2) tied together and placed in pairs at 15 cm intervals across two parallel metal wires. The slides were removed periodically, brought to the laboratory and observed under the microscope for deposited sporangia of Plasmopara viticola. The number of sporangia deposited over one cm2 area of the glass slide was taken as the measure of spore release in the field. Counts on deposited sporangia were made on five randomly selected areas (one cm2) on each of the ten slides per treatment.

The spore deposition on the vertically and horizontally hung ladders will be referred to as vertical deposition and horizontal deposition respectively.

Vertical and horizontal deposition of sporangia were studied by hanging spore trap-ladders both in the vertical and the horizontal direction in the vineyard. Greased slides kept vertically and horizontally on the spore trap-ladders at 15 cm below the canopy from 6 am to 6 pm on a sunny day were removed and examined for deposited snorangia.

Capture of sporangia was also recorded on an hourly basis in a seperate experiment. Spore trap-ladders were kept vertically and horizontally at 15 cm below the canopy. Sets of slides were removed between 6 am and 6 pm, and observed for deposition of spores.

The vertical deposition of sporangia at different heights in the washing the studied. Pairs of greased slides tied at 0 cm, 15 cm, 30 cm, 60 cm, 90 cm, 20 cm and 60 cm on cm of 50 cm below canopy level and 30 cm and 60 cm above storp level on spore texpladders hung vertically from 6 am to 6 pm were removed and observed for deposited sporangia.

The vertical distribution of sporangia was also studied in the field one a period of one month. Slides held at different heights from 6 am to 6 pg were removed daily and observed for deposited spores. The mean numberal sporangia deposited over one cm² area of the slide were recorded from 6 December 1987 to 5 Ianuary 1983.

In another experiment the spore release and the spreading of infection 0.2 Frandomly selected twigs in a vineyard were studied simultaneously one a period of 4 months starting from 1 December 1982 to 3 April 1983. Pair of greated sildes tied at 15 cm below the canopy on vertically hung spore tay-ladders, from 6 am to 6 pm, were removed daily and the capture of sponsipi

Spreading of infection in field

Twenty five randomly selected twigs were tagged and observed for infestis. The number of leaves infected per twig was recorded daily during the priof from 1 December 1982 to 3 April 1983.

The development of infection on leaves of different ages was also studied in vineyard over a period of one month. Leaves of different ages in a twig war denoted as 0, 1, 2, 3 etc. starting from the spec. Twenty five such randomly steed truting were tagged and observed daily for development of infection. The Isra's measurements of all the leaves in 25 twigs were obtained daily during December 1982. The amount of infection on leaves was ascessed with the help of the standard score diagrams prepared by Ramanustana (1985) (Appendix b). The leaves were given scores for percentage area of infection. The diser infection by the day of the standard score of the score

Seasonal occurrence

The general seasonal occurrence of downy mildew disease of graps vine was also recorded during a 3 year-period starting from October 1981 b

Vertical and horizontal spore release

The number of sporangia deposited vertically and horizontally from 6 am to 6 pm over one cm² area of the slide varied significantly (Table 1). The amount of vertical deposition was greater than that of the horizontal deposition

Table 1: Vertical and horizontal spore release of Plasm-para viticola in the vineyard

Position of spore trap	Mean number of sporangia deposited cm ⁻² area of the slide
Vertical	93 a
Horizontal	5 b

The values denoted by different letters are significantly different (P=0.05) Hourly spore release

The vertical deposition was higher than the horizontal deposition throughout the day (Fig. 1). No spore release was observed from 6 am to 9 am and 6 am to 12 noon on the vertically and horizontally placed ladders, respectively. The amount of vertical spore deposition started to increase with time after 9 am and reached a maximum level between 12 noon and 2 pm.

Table 2: Vertical spore release of Plasmopara viricola at different heights in a vineyard

	Height from canopy (cm) Mear depo				Mean number deposited cm- slid	2 area of the
	0	(canopy)	320	a		
	15	(below)	324	4		
	30	(below)	14	b		
	60		3	C		
	90	(below)	1	d		
	120	(below)	Z1	d		
			21	d		
	150	(below)	Z1	d		
	30 60	(above)	Z1	d		

The values denoted by different letters are significantly

different, (P=0.05).

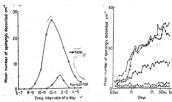


Fig. 1: Hourly spore of Plasmopara viticola showing the vertical and horizontal spore deposition in a vineyard.

Fig. 2: Vertical deposition of scorania Plasmopara viticola in a viteya over a period of one month.

- O 15 cm below canopy (X) canony level
- 30 cm below ▲ 90 cm below
- A 60 cm below

Spore release at different heights in a vineyard

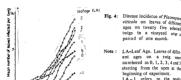
Maximum captures of sporangia were recorded at 15 cm below casts (Table 2). The amount of sporangia deposited decreased gradually as the distant below and above canopy increased. The amount of spore release just slove the canopy was negligible or very much less than that deposited just below the canopy.

Spore release over a period of one month

The number of sporangia deposited at different beights increased gradital with days from 6 December 1982 to 5 January 1983 showing the building upd inoculum in the field (Fig. 2).

Spore release and spreading of infection over a period of four months

The values obtained for daily spore release and infection in a visepard from J December 1982 to 3 April 1983 were compared with each other. The pattern of spor release was similar to infection (Fig. 3). Both the own of spor release was similar to the owner of a typical growth most of office places of the pattern of a typical growth most of office places of the pattern of a typical growth most of office places of the pattern of a typical growth most of the pattern of


Disease incidence on leaves of twenty five twigs over a period of one month

At the beginning of the season the leaves of age 4 developed infections first and subsequently the fungus spread to the younger leaves and leaves of age. The smoonst of infection increased gradually with time (Fig. 6) and maximum value for disease incidence was recorded on leaves of age 3 during the experimental period. Infection also spread to the newly-appeared leaves about twenty days after they open.

Fig. 3 Vertical spore release and spreading of infection of Plasmopara viricola on twenty five selected twigs in a vineyard over a period of four months (from 1 Dec. 1982 to 15 Apr. 1983). (Each division in the X axis indicates four days.)

appeared leaf.

Seasonal occurrence of downy mildew disease in Sri Lanka

The occurrence of downy milder disease in the vinoyands of Jaffus, & Lanka was recorded from November 1981. To February 1983, from December 1981 to April 1983, and From October 1983 to March 1984, during the three year-level and infection in the rainty season during the three years of study followed similar trends. However, the first phase where their was gradual building up of incounter and the decline phase where the was gradual building up of incounter and the decline phase where the years of the declining up of incounter and the decline phase where the gradual to disappear were alightly shifted depending on the weather condition.

Table 3: Scasonal occurrence of downy mildew disease of grape vine

Year	Period of occurrence Logarithmic	of phases of Stationary	the disease cycle Decline
1981-1982	7 Nov to 2 Dec	3 Dec to 30 Jan	31 Jan to 18 Feb
1982-1983	1 Dec to 28 Dec	29 Dec to 2 Mar	3 Mar to 15 Apr
1983-1984	19 Oct to 24 Nov	25 Nov to 6 Feb	7 Feb to 12 Mar

Discussion

It has been observed for several years that the downy mildew disease of grape vine is a destructive fungal disease which is usually severe under rainy weather in the presence of dew.

The seasonal occurrence of downy mildew disease in the viaeyards of Jaffan region showed that ill fortions started when the rainy season starts and last ill April with the severity of the disease observed in February. The introduction of the fungus to the vine leaves at the beginning of the season greatly depends on the occurrence of periods of rain. The longer trainy season, the longer was the period of infection was very short because of the brief period of rains, but during the next two years the infection remained in the vineyards for longer periods and there were prolonged rains. The initial appearance of the fungus, maximum disease occurrence and spore release and the disappearance of the fungus on vine leaves varied depending on the weather conditions such a rains and periods of deen-

Although all green parts of the vine plant were affected by the fungus, (Ramanham, 1985) the mont apparent symptoms were on the leaves. The infection process was initiated by generatists on of air borne sporaugia and required a cool and moist environment. However, the maturation of sporaugia and their cleases took place in a relatively day, high temperature environment and this fact is supported by the observation that high amounts of spore release were recorded during the daytime between 12 soon and 3 per controlled the process of the daytime between 12 soon and 3 per clease were recorded during the daytime between 12 soon and 3 per clease were recorded during the daytime between 12 soon and 3 per clease.

The amount of vertical deposition of sporangia was greater than that of the horizontal one. This may be mainly due to wind action by which the sporangia, detached from mature lesions, are deposited on the surface of sildes. The mechanism of spore deposition on new host leaves can be similar to this.

The spore captures were maximum just below the canopy and this may be because the sporulating structures of the downy mildew fungus are formed only on the lower leaf surface and the air is still just below the canopy.

Although the present investigation provides information tragarding development and occurrence of the downy mallow disease, father investigations, the extraction of the development of the second of the disease of the development of the development of the disease and the disease includes of weather the disease incidence and in taking control measured salinat the down miles for fingue.

Acknowledgement

The author wishes to thank Dr. A. Sivapalan for his invaluable goldton during the course of this work. This project was supported by a grant from Natural Resources, Energy and Scientific Authority of Sri Lanla, income part of an M. Phil Thesis submitted to the University of Jaffaa, Sri Lanla, income part of an M. Phil Thesis submitted to the University of Jaffaa, Sri Lanla, income part of the University of Sri Lanla, income part of the University of Jaffaa, Sri Lanla, income part of the University of the University of Sri Lanla, income part of the University of Sri Lanla, income part of the University of the University of Sri Lanla, income part of the University of the University of the University of the University o

References

- Boubals, D. (1977) Mildew in the vineyard. Au Vignable le mildiou. Propra Agricole et viticole (1977) 94 (17) :78 - 481.
- Cobaz, R. (1972) Phytopthology 74 (4) 318 328. Cited in Downy Milden of the vine. Lafon, R. & Bulit, J. (1981).
- Galet, P. (1977) "Les maladies et les Parasites de la Vigne". Tome I, Mospelin Imprimerio du Paysan du Midi. Cited in Downy milden of the rise Lafon, R. & Bulit, J. (1981).
- Istwanffi, Gy. de. (1914) Bull. Rens. Agric. (Rome). Cited in Downy milder of the vine. Lafon, R. & Bullt, J. (1981).
- Lafon, R. & Built, J. C. (1981) Downy mildew of the vine, The Downy mildem ed. D. M. Spencer , 28: 601 - 613.
- Ramanathan, N. (1985) "Studies on the downy mildew disease of grape vinc caust by Plasmopara viticola (Berk. & Curt.) Berl. & de Toni." M. Phil Theis, University of Jaffna, Sri Lanka.
 Ramanathan, N. & Sivapalan A. (1988) "Some observations on the downy milder
- disease of grape vine caused by Plasmopara viticola." Journal of the Nativel Science Council of Sri Lanka. 16 (1), June 1988.
- Ravaz, L. & Verge, G. (1914) Ann. Ec. Natn. Sup. Agron. Monpellier N S, XIV. (1914), 169 - 199. Downy mildew of the vine. Lafon, R. & Built, J. (1981).

Appendix: I Standard score diagrams (Ramanathan, 1985).

Standard score diagrams for percentage area of infection of plasmopara viticola on leaves of grape vine: No infection (a), 5% infection (b), 10% infection (c), 25% infection (d), 50% infection (e), & 75% infection (f).

EFFECT OF VOLATILE SUBSTANCES FROM AZADIRACHTA INDICA (NEEM) SEEDS ON THE REPRODUCTIVE BIOLOGY OF

TRIBOLIUM CASTANEUM (COLEPTERA: TENEBRIONIDAE)

PATHMINI MAHESWARAN & V. K. GANESALINGAM (Department of Zoology, University of Jaffna, Jaffna, Sri Lanka.)

Vingnanam - Journal of Science 3: 20-26 (1968)

ABSTRACT: The effect of voletile substances of crushed seeds of Assdirachts indice on newly emerged and meted adults of Vribolium castaneum (Herbst) was studied in the laboratory. Air was passed through a jar containing crushed seeds of A. indics and into another jar containing a pair of adult T. casta-stars living on damaged rice grain. Air containing about 13% volatile substances of neem was passed through continuously during the experiments. The following observatious were made with regard to the reproductive

biology of T. contentum in the presence of air containing the volatile substances: a significant reduction in the number of eggs by 27.5 1/2 a prolongation in the developmental period from egg to larve by 25 days; a significant reduction in the number of larvae emerging by 22.8%; 100% larval mortality. When larvae were introduced into the experimental sel-up it was found that prohibition of further development by volatile substances depended on the age of the larvae. However the longevity of adults was not affected.

It appears that the volatile substances of neem seeds cause adverse effects on the reproductive biology of T. costanewn. A CONTRACTOR AND A STATE OF THE PARTY OF THE

Introduction

The increasingly serious problems of pest resistance to continuous or heavy usage of pesticides and of environmental contamination associated with the use of broad spectrum synthetic pesticides have indicated the need for effective, biodegradable pesticides with greater selectivity. In a developing country like Sri Lanka, additional problems are their improper use, nonavairbility of suitable application equipment and high price. These induced world wide interest in the use of age-old, traditional botanical agents such as neem for pest control. Various forms of applications of bark, leaves and seeds of neem tree (Azadiracta indica A. Juss) have been found promising agoil of pest control. In addition, neem satisfies consumer safety even when applied to stored products. Some work has been done with volatiles of neem gtd kernels on insect pests (Saxena and Rembold, 1983; Thurayratnam and Ganesi lingam, 1985). The effect of neem oil vapour on the reproductive efficient of Earias fabia (Stoll) was studied by Pathak and Krishna (1986). The reproducint biology of Tribolium castaneum (Herbst), an important pest of stored cereal was studied by Dawson (1977).

In the present study the effect of volatiles of neem seeds on the fi productive biology of T. castaneum was investigated.

Materials and Methods

Decorticated and shade-dried neem seeds were finely crushed by using mortar and pestle. Three grams of crushed seeds of A. indica were kept in a bottle (375 ml) which was connected by a glass tubing to another jar (840 ml) containing a pair of newly emerged and mated adult T. castaneum in 5 g of broken rice grains in a 10 ml glass container. The broken rice grains used in the experiments were passed through a 3 mm mesh but retained by 2 mm mesh sieve. Damaged rice grains were used in the experiments because the rust red flour beetle T. castaneum is an important secondary pest requiring prior infestation by an internal feeder or some form of mechanical damage of the whole erain (Shazali and Smith, 1986).

Air was pumped by an air pump (Rena 10) - flow rate of air = 7:5 ml of air displacement/s) into the jar with crushed neem seeds and subsequently this air was carried into the jar containing the insects (Fig.1). The air passed into the jar containing the insects was found to contain about 13% volatile substances. The percentage of volatiles in the set-up was calculated by adsorption of the volatile substances into activated chargoal powder in comparison with the normal atmosphere, Preliminary tests using different weights of crushed neem seeds to provide 131/2 volatiles in the set-up demonstrated three grams as the suitable minimum amount. The concentration of volatiles was maintained throughout the experiment by regular checks.

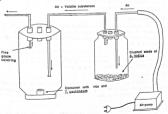


Fig. 1 Set up used to obtain volatiles of A. indica

The mated pair in the set-up was removed after 21 days and the re productive biology of T. castaneum in the presence of the volatile substante of neem seeds was studied.

To study the effect of volatiles on larval development, larvae of varying ages were introduced separately into the set-up and observed daily. From newly hatched larvae (0-24 h old) to 24 day old larvae were tested. In each set-up. ten larvae of particular age were kept in a 10 ml glass container with five of broken rice grains. These larvae were kept in the presence of volatiles unit the adults emerged. The range of age of larvae susceptible to the volatiles of neem seed kernels was recorded

The experiment was repeated six times and a control experiment was conducted concurrently by passing air only through the experimental set-up.

The studies were carried out in the laboratory at 28.5 ± 1.5°C temperature and 50-62% RH. Students t-test was used to analyse the data.

Results

Number of eggs:

In the prevence of volatiles of neem seeds the mean number of eggs isit within 21 days was 95-2 (±4-4); whereas in the control experiment, the mean number of eggs laid was 131.3. Thus the number of eggs laid by a single femile T. castaneum was significantly reduced by 27-5%.

Number of Juryae:

The mean number of larvae emerging in the control was 700. In the presence of volatiles the number of larvae emerged was 47.2 (±3.1). There was a significant drop in the number of larvae emerging from the eggs in the present of volatiles of neem seeds.

Number of pupae: In the presence of volatiles all newly e nersed larvae died and no pupit

were observed. In the control, 67-3 puppe were formed Number of adults :

Although no adults were formed in the presence of volatiles due to blockage at larval stage, 65-0 (±3-6) adults developed in the control and hence 49 % of eggs laid gave rise to adults.

Egg incubation period :

The eggs laid in the presence of volatiles were kept under the same conditions continuously and the time taken for the emergence of larvae, i.e. of incubation period, was recorded. Mean incubation period was 8.2(±1.3) days if December 1988 Pathmini & Ganeshalingam: Effect of neem seed on Trib slium 23
the presence of volatiles, whereas in the control it was found to be 5.7 days. A

the presence of volatiles, whereas in the control it was found to be 5.7 days. A significant prolongation by 2.5 days was observed in the presence of volatiles of neem seeds.

Mortality at embryo and larval states :

In the presence of volatiles 50.8% death occurred at the embryo stage within the egg whereas 47% death occurred in the control. The difference in moriality at the embryo stage was not significant (F=0.05).

Newly emerged larvae were highly susceptible to the volatiles of neem seeds and showed 100% mortality. But only 3-3% mortality was observed during the larval stage under normal conditions. Hence larval mortality increased by 96.7% in the presence of volatiles.

Effect of volatiles on larvae of varying age:

Newly hatched to 12-day old larvae showed 100% mortality, whereas 13-24 day old larvae pupated even in the presence of volatiles.

Development of 13-day old larvae:

The youngest larvae that survived to become adults in the presence of volatiles were found to be 13-day old. Further studies on the development were made from these larvae.

1. Number of F, progeny:

Number of F, progeny that developed from ten 13-day old larvae was 7-2 (\pm 1-2) and 9-3 in the presence of volatiles and in the control respectively. Here a significant reduction was recorded in the presence of volatiles.

2. Sex ratio of F, progeny:

The sex ratio of the F, progeny that emerged was unaffected by the volatiles and was 1:1 (male: female) in the presence of volatiles and in the control.

3. Mortality in larval and pupal stages:

In the experimental larvae, 1.5% and 0.3% died in the presence of volatiles and control respectively. In the pupal stage, 0.3% died in the control and 1.0% died in the presence of volatiles. Both larval and pupal mortalities showed significant differences from controls (P=0.05).

4. Duration of pupal development :

The duration of pupal development in the control was 63 days, whereas in the presence of volatiles of neem seed kernels it was prolonged significantly by 22 days.

24

The mated pair of adults kept in the presence of volatiles and usen normal conditions was removed from the experimental condition after 21 day and maintained in ambient conditions. All these survived for more than fig. months.

Discussion

Evaluation of neem seed kernel or extract against a number of insect put species have demonstrated neem's diverse biological effects including the elfug on reproductive biology (Akou-Edi, 1983; Saxena et al. 1981; Steffens and Sanutterer. 1983).

The total number of eggs laid by T. castonemu was reduced significant, in the presence of volatiles of neem seeds. Similar observation was made sel Statunga cere-trilia in the presence of volatiles of crushed neem seeds (Itanyaranam and Gamesanilagam, 1985). It appears that the effect on egg laying selected up to a lack of suitable environment for egg laying or due to inhibite effects of the volatiles of neem seeds on T. castonemum.

Though there was no significant reduction in the number of larvae exering the number of days taken for laval emergence increased significantly. It appen that the volatiles may contain a growth inhibitor as stated by Rembod 64 (1981).

The most prominent effect observed in the presence of volable is the 100% mortality of the larvas. This may be either due to the tools of for violaties on the young stages or due to deterrent effect of feeling and careful effect on development caused by volatiles cancering through replien pathways or during feeling or through larval cuticle. When returing the logical particle pathways or during feeling or through larval cuticle, when returing the lopment it may act either as meanmorphosis disruptors (Randon, 1971) with the larval cuticle pathways or during feeling or development used inkelby due to tools of effects of feeling or development used late in tars developed under the same conditions. This may be a domps/mortified where the ties instant only had a suphthal doors.

In the larval stage, inhibition of further development by the viole depended on the age of the larvae. Newly hasched larvae to 12-day old into stages showed on further development. But larvae of 13-day old and soft size to 15-day old and size to 15-day ol

Even the larvae that survived under the experimental conditions shore significant prolongation of development to adult stage. Here prolongation occurred

December 1988 Pathmini & Ganeshalingam: Effect of neem seed on Tribolium 25

in the duration of both larval development and pupal development. This may in the durantee. In it is may be due to growth inhibitory activity or metamorphosis disruption effect or moult inhibition effect of neem seed volatiles

Although a difference was observed in the number of F, progeny that developed in the presence of volatiles there was no difference in the sex-ratio This may indicate equal susceptibility of male and female insect to volatiles.

The effects of volatiles were investigated at a concentration of only 13%. However, if the concentration of the volatile is increased, a better control of the nest could be expected.

An important advantage of the application of volatiles of neen seed kernel is that if neem kernels were applied directly to the edible materials for protection, neem substance may persist longer and hence be more undesirable than that which operates without direct contact.

The diverse effectiveness reported here against the reproductive biology of T. castaneum; i.e. safety, low cost, case of application and availability to farmers in many developing countries including Sri Lanka, emphasises that application of volatiles of neem seed kernel could be considered for the control of T. castaneum in stored products.

But this may be used only on a small scale by farmers for preventing pest damage to a considerable extent. However, the use of volatiles, by their very nature may pose practical problems. Further research on ways of releasing these substances under the storage conditions is needed.

Acknowledgement

The authors thank Mr. N. Bakeerathan for typing the manuscript.

References

Akou-Edi, D. (1983) Effects of neem seed powder and oil on Tribolium confusum and Sitophilus zeamais. Proc. 2nd Int. Neem Conf. Rauischolzhausen, 445-452

Dawson, P. S (1977) Life history; strategy and evolutionary history of Tribol'um flour beetles. Evolution, 31 (1), 226-229.

Pathak, P. H. and Krishna, S. S. (1986) Reproductive efficiency in Extras fabia Stoll (Lepidoptera : Noctuidae) affected by neem oil vapour. Applied Ento-

mology and Zoology, 21 (2): 347-348

96

- Vol. 3, Nos. 1 42 Redfern, R. E., Warthen, Jr. J., Mills, Jr. P. G. D. and Vebel, E. C. (19)). Moulting inhibitory effects of Azadirachtin on large milkweed bus Agric, Res. Results: USDA Ser. 5:5.
- Rembold, H., Sharma, G. K. and Czoppelt, C. (1981) Growth regulatory attivity of azadirachtin in two holometabolous insects. Proc. 1st. Int. Neon Con. Rottach - Egern 121: 128.
 - Ruscoe, C. N. E. (1972) Growth disruption effects of an insect antifeedant Natur. New Biol, 236: 159 - 160.
- Saxena, K. N. and Rembold, H. (1983) Orientation and ovipositional responses of Heliothis armigera to certain neem constituents. Proc. 2nd Int. Neur Con.
- Rauischholzhausen. 199 210. Saxena, R. C., Walbauer, G. P., Liquido, N. J. and Puma, B. C. (1981) Effects of Neem seed oil on the rice leaf folder Cnaphalocrocis madinalis Proc. Istle Neem Conf. Rottach - Egern, 189 - 203.
- Shazali, M. E. H. and Smith, R. H. (1986) Life History studies of externally feedige pests of stored sorghum: Corcyra cephalonica (Staint.) and Tribolium cutneum (Herbat), J. Stored Prod. Res. 22:55 - 61.
- Steffens, R. J and Schmutterer, H. (1982) The effect of a crude methanolic ners (Azadirachta indica) seed kernel extract on metamorphosis and quality of adults of the mediterranean fruit fly, Ceratitis capitata Wied. (Diptor: Tephritidae). Z. Ang. Ent., 94: 98-103.
- Thuravratnam, P. and Ganesa lingam, V. K. (1985) Effect of volatile substances of seeds of Azadirachta inaica (margosa) on the reproductive biology Sttotroga cerealelia (Olivier) (Lepidoptera : Gelechiidae). Proceedings Si Lanka Association for the Advancement of Science, 1:82,

Received for publication June 1988

ISOLATION OF INTRA-CELLULAR SYMBIOTES FROM THE RROWN PLANTHOPPER NILAPARVATA LUGENS (HOMOPTERA: DELPHACIDAE) OCCURRING IN SRI LANKA

G. F. RAJENDRAM & ANNETTE SELVADURAL (Department of Zoology, University of Jaffina, Sri Lanka)

Vingnanam - Journal of Science 3: 27-30 (1988)

ABSTRACT: The existence of yeast-like symbiotes or mycotocytes in the mycetosome of eggs, fat bodies and ovaries of the brown planthopper. Nilabaratuta lugens (Stål) has been reported from Japan. The present study describes the isolation of intracellular yeast-like symbiotes or mycetocytes from the myc-tosome of eggs and fat bodies of N. lagers occurring in Sri Lanka. N. Jugers used in this study was obtained from rice fields in Amparal district and cultured in the laboratory in Jaffna. Two kinds of yeast-like mycetocytes were observed in the eggs and fat bodies of N. lagens: elongated sheath-like mycelocytes and oval shaped mycetocytes, the former being more numerous. The mycetocytes from N. lurens in Sri Lanka are smaller than those reported from Japan.

Introduction

The occurrence of yeast-like organisms (YLO) in the cytoplasm of the mycetosome of the planthoppers has been known for some time (Buchner, 1963)-Nasu (1963) demonstrated the existence of yeast-like organisms in the mycetocytes of eggs, fat bodies and ovaries of the smaller brown planthopper, Laodelphax striatellus Fallen. Kusumi et al. (1979) isolated two yeast-like cells from eggs and fat bodies of L striatelius Nasa et el. (1981) also isolated two yeast-like cells from the eggs and fat bodies of Niloparrata lugens (Stâl) occurring in Japan. The present study attempts to determine if symbiotes are present in the eggs and fat bodies of N. lugens occurring in Sri Lanka and to describe their morphological characteristics.

Materials and Methods

N. lugens used in this study was obtained from rice fields in Amparai district and cultured in the laboratory at the University of Jaffra on rice variety, TN 1. The mycetocytes were obtained from the eggs of N. lugens as follows The ovaries of gravid female N. lugens were dissected out and the eggs removed The eggs were surface sterilized by submersion in 71% ethyl alcohol for 1 min The mycetosome was then dissected out in sterile distilled water and the mycetocytes teased out. The mycetocytes were obtained from the fat bodies in a similar manner, by dissecting out the fat bodies from female N, lugens and suface sterilizing them in 70% ethyl alcohol for I min and teasing out the mycetocytes in sterile distilled water.

A thin smear of the mycetocytes was made, left to dry in the air, and then fixed by passing the slide through the flame. It was stained with carbo fuschin for 30-60 sec and then rinsed with distilled water. Alternately protozoan stain was used: the smear was immersed in Schaudinn's fixative for 10-20 min, then covered with mordant solution overnight, and with stained Heidenhain's Long Iron Hematoxylin overnight.

Results and Discussion

The mycetosome in the egg of N. lugens is a round body measuring 36 µm in diameter located in the posterior region of the egg. Two montes logically different yeast-like symbiotes could be distinguished by microsome examination of the mycetocytes of both eggs and fatbodies of adult N. Javan (a) elongated sheath-like cells and (b) oval-shaped cells. The former kind of mycetocytes were more numerous,

The oval shaped mycetocytes from the eggs had an average length of 53+ 0.854 m (range 3.6-64 m). The elongated cells averaged 14,35-2.024 m (range 12 ii 18.0 Pm).

The oval shaped mycetocytes from the fatbodies averaged 5.11±0.68µm (rup 3.6-6.0\(\mu\)m) while the elongated cells averaged 13.87\(\pm\)2.05\(\mu\)m (range 10.8-18.0\(\mu\)a Fig. 1).

isolated from egg of N. lugens

Fig. 1 Oval and elongated mycerocytes Fig. 2 Oval and elongated mycerosys isolated from fatbody of abdout of N. hwens

pecember 1988 Rajendram & Selvacurai : Intra-cellular Symbiotes in N. lugens 29

The elongated mycetocytes were significantly leaves of the second state of the second

The elongated mycetocytes were significantly longer than oval shaped ones in both the eggs and the fatbodies (Table 1). However there were no significant differences in the size of elongated mycetocytes from eggs and fat bodies and the oval shaped mycetocytes from eggs and fat bodies.

Table I Elongated and Oval-shaped Mycetocytes isolated from Eggs and Fatbodies of N. lugens

Organ of origin	Shape of mycetocyte	Total number of insects (n)	Average length (Mean±SD)	t-value
Egg	Oval	. 20	5,28±0,85	
	Elongated	20	14.35±2.05	17.10
Fat body	Oval	20	5.11±0.02	
	Elongated	20	13.87 ± 2.02	18.69*

[&]quot;Significant at 0.005% level.

The two morphologically distinct spreakeyes found in the eggs and fixed in a fixed part of the production of N. Inguest in Sri Lanks resemble the two kinds of productives reproduced from et al. 1981, and L. strikelber 1981, and the strikelber 198

Although it is generally recognized that in the body of the adult fenale these organisms are framsferred from fat bodies to ovaries and penetrate into the '82 through the ovarial pedicel as a ball of symbiotes, the role of these symbiotes has still not been defined and await further study.

Acknowledgement

Thanks are due to Professor V. K. Ganesalingam, Department of Zoology, University of Jaffna, for facilities: Miss Y. Kumarasamy and Mr. S. Narendran for technical assistance.

Vol. 3, Nos. 142

References

- Buchner, P. 1963. Endosymbiosis of Animals with Plant Microorganisms. Inle. science Publishers. New York,
 - Kusumi, T., Y. Suwa, H. Kita and S. Nasu, 1979. Symbiotes of planthoppers. I. The isolation of intracellular symbiotes from the smaller brown plant hopper, Laodelphax striatellus Fallen (Hemiptera: Delphacide). Appl. Ed. Zool. 10: 243-245.
- Nasu. S. 1963. Studies on some leafhoppers and planthoppers which transmit visus disease of rice plant in Japan. bull. Kyushu Agric, Expt. Su 8:153-349.
- Nasu, S., T. Kusumi, Y. Suwa and H. Kita, 1981. Symbiotes of planthoppins II. Isolation of intracellular symbiotic microorganisms from the brown planthopper, Nilaparvata livers (Stal) and immunological comparison of the symbiotes associated with rice planthoppers. Appl. Ent. Zool, 16: 88-93.

Received for publication December 1986

OBSERVATIONS ON THE EMBRYONIC DEVELOPMENT OF NEPHOTETTIX VIRESCENS (HO MOPTERA: CICADELLIDAE)

G. F. RAJENDRAM & RAJINI RAJESWARAN

(Department of Zoology, University of Jaffna, Jaffna, Sri Lenka)

Vingnanum - Journal of Science 3: 31 - 37 (1988)

ABSTRACT The paper describes the embryonic development of the green leafthopper, Neyhoutrus invensor (Distant). Whole mounts of 1–6 day old eggs were stationed with the acets entered and embryonic producephanon and produce megions were visible on edgr trade-order producephanon day 5, eye spots on day 4, gnathal segments on day 5, and estimons and legs on day 6, and estimons and experience of the producephanon day 6, eye spots on day 6, gnathal segments on day 5, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and experience of the producephanon day 6, and estimons and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a second day 6, and estimons are considered as a seco

Introduction

The green leafhoppers of the genus Nephnetric are common pers of the cere copy in Southment Asian countries (Kalode, 1831). In the Indian subcontinent, leafhoppers had the status of a minor pest all 1955, but suddenly beamed a major pest and caused severe damage, the first seth includent being personed in 1956, in Banghadesh (Runstrishnan, 1951). In Si Lauka, Nephnetric inviences (Distant) and Nephnetric inviences (Salt are the act (compulshed data) reported that N vienness and N emportant variety of the Computer Control in Citich in K. Morallo (Salt are the most Person and N emportant persons and N

Both nymphs and adults cause damage by sucking the sap from leaves and stem of rice plants. Severe attack results in what is termed "hopper burn". Besides the direct damage, they also cause serious damage indirectly, by transmitting the causal agents of various diseases (Ling, 1972).

Eggs are laid in groups on the inner surface of the leaf sheath, especially in the basal portion. Valle & Kuno (1984) reported that the incohation period of N. virectors: was 94.2-0.11 days in Japan, under conditions of 25±1°C room temperature and 16 h photoperiod, using a susceptible japonics variety, the present study describes the embryonic development of N. viveness of Sri Lauka.

Materials and Methods

N. vireaseas culture used in this experiment was obtained from a rice field at Arukalimadam in Jaffan peninsula and reared in the laboratory at the University of Jaffan, on rice variety Bio 94-1. The temperature in the laboratory registered 18-27C and relative humidity 30-100%. Since N. whenever tands to occur together with N. strepolicus and the New Monteries species in the rice fields, N. whereene was identified using the tap prepared by Chauri (1971). Eggs of varying stages of development, 0.6 day of, were obtained according to the method described by Rajorieman & Schwaderie, Montpoloogical observations of the filliferent stages of embryonis development were made under a mixtocope and measurements under universe interescope and measurements. The eggs were stutied in sean-micrometer, and averaged from 10 fieldwiselasts. The eggs were stutied in sean-entire control of the students of the of the stu

Results

The incubation period of N. wirescens was 6.95±0.65 days. Eggs are laid in single rows on leaf sheath tissues near the base of the plant or in ventral midrib of leaf blades. The anterior ends of the eggs are attached to the leaf sheath by a comentum material (Fig. 1).

0 day old egg

The newly laid egg is 760±40 pm long and 240±20 pm wide (Fig. 2). The egg is white in colour and contains a large yolky mass, granular in appearance. The chorion covers the egg.

1 day old egg

The 1 day old embryo is approximately 766±40Jtm long and 260±30Jtm wide. Protocephalon and protocorm regions are now visible. It appears pale yellow in colour (Eig. 3).

2 day old egg

The 2 day old embryo is 702±37µm long and 160±20µm wide. It is pak yellow in colour. Protocephalon and protocorm regions are visible. The bad develops subsequently in the anterior region of the eng (Fig. 4).

3 day old egg

The 3 day old embryo measures 780±30 µm long and 212±23 µm wide. Slight segmentation of the head, thorax and abdomen can be observed. Head hears anothal segments and antennal seements (Fig. 5).

4 day old egg

The 4 day old embryo measures approximately 1070±77/m long at 319±40/m wide. The embryo is now yellow in colour. Red eye spot become more prominent and can be discerned with the naked eye. The genthal segment become clear and the thoracle appendages are developed. The abdominal segments are sevident (Fig. 6).

4 day old egg

The 5 day old embryo is $1080\pm45 Pm$ long and $330\pm20 Pm$ wide. The gnathal segments can be divided into mandibles, maxillae and labrum. The segmentation of the legs can be seen. The length of the hind leg is $510\pm40 Pm$ long (Fig. 7).

6 day old egg

The 6 day old embryo is $1090\pm40\mu$ m long and $216\pm22\mu$ m wide. The antenna is approximately $300\pm20\mu$ m long and hind leg $950\pm70\mu$ m long. The abdominal markings are more evident. The chorion assumes the shape of the embryo (Fig 8)-

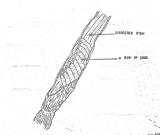


Fig. 1 Dissected rice stem showing eggs of N. virescent. (× 40)

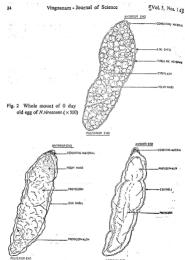


Fig. 3 Whole mount of 1 day old egg of N. virescens. (x500)

Fig. 4 Whole mount of 2 day old egg of N. virescens. (x500)

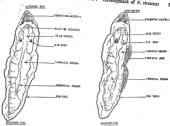
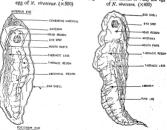



Fig. 5 Whole mount of 3 day old egg of N. virescens. (×500)

Whole mount of 5 day old egg of N. virescens, (×400)

Fig. 8 Whole mount of 6 cay old egg of N. virescens. (×400)

Whole mount of 4 day old egg

Discussion

The incubation period of N. wirescens in Jassian was observed to be 6.95±0.05 days. But Valle & Kuno (1984) reported an incubation period of 9.41±0.11 days for N. wirescens in Japan, in a 25±1°C room temperature with 16 h photoprind using a susceptible inponica variety.

In the present study, the organ system appears first in the future thousing in the vental side of the embryo and then extends to the lateral and deep sides. The phenomen appears to confirm the presence of a differenciation owner reported in the Hemispteran Psychocaris sp. (Scidel, 1924) and Nilapariyasi layer (648) (Rajendrana & Schaturat, 1987).

The embryo of the insect is at first divisible into two main regions - a protocephalic region or primary head region and a protocormic region or primary

trusk region. The proteophalic region gives rise to the president season and gualable segment switch the remaining agenment form the future beauth the proteocormic segments hear the rusdiments of the future thoracic legs and the remaining segments to constitute the thorax and abdominal egions. The west regimentation is clearly seen to N. thexecut embryo in the pretent study.

Coloured 29s 5pots have been reported in the embryo of N. lagent after 22 h (Rajendram & Selvadurai 1897). Red cys spots were visible in embryo of N.

N. wirescens, in the present study, after 72 h, less than half-way through embryogenesis.

The shorter developmental period as compared to Valle & Kuno (1940)
appears to be due to the higher temperature conditions in the present study.

Acknowledgement

Grateful thanks are due to the following of the University of Jaffas: Professor V. K. Ganesalingam, Head of the Department, for facilities Miss N. k. Antony for assistance in various ways; Miss Y. Kumarasamy and Mr. K. Ratsistance for the Chinesia assistance in various ways;

References

Ghauri, M. S. K. (1971) Rivision of the genus Nephotettix Matsumura (Homophetic Cicadelloideda: Euscelidae) based on the type material. Bull. ent. Ro. 60, 481-512.

Kalode, M. B. (1983) Leafhopper and Planthopper pests of rice in India -pp. 25-245 In 1st International Workshop on Leafhoppers and Planthoppers of Economic Importance. Commonwealth Institute of Entomology, London.

- pecember 1988 Rajendram & Rajeswaran: Development of N. wirecens 37
- Liag, K. C. (1972) Rice virus diseases. 142 pp. International Rice Research Institute, Los Banos, Philippines.
- Rajendram, G. F. (1984) Biological control of paddy pest in Sri Lanka. Vidutata, Bulletin of the Natural Resources Energy and Science Authorsty of Sri Lanka, 8, 16-19.
- Rajandram, G.F. & Selvadurai, A.(1987) Observations on the embryonic development Nilaparhyata lugens (Stal) Homoptera: Delphacidae). Vingnanam J. Sci. 2: 36-42.
- Ramakrishnan, U. (1983) Morphometrics of various populations of Rephotetits species in India. -pp. 319 - 313 in 1st International Workshop on Leafhoppers and Planthoppers of Economic Importance. Commonwealth Institute of Entomology, London.
- Seidel, F. (1924) Die Geschlechtsorgane in der embryonalen Entwicklung von Pyrthocoris apterus, -Z. Morph. Okol. Tiere, 1, 429-506.
- Valle, R. R. & Kuno, E. C. (1984) A comparative study of some bionomic parameters of three species of green leafhopper (GLH). Int. Rive Res. Novel. 9(4), 17.

Received for publication 15 January 1987

EFFECT OF HORIZONTAL CENTRFUGATION ON REPRODUCTIVE BIOLOGY CALLOSOBRUCHUS MACULATUS (FABRICIUS) (Coleoptera: Bruchidue)

(Coleoptera : Bruchmae)

SAKUNTHALADEVI AMBIKAIPAHAN & V. K. GANESALINGAM (Department of Zoology, University of Jaffns, Sri Lanka)

Vinenanam - Journal of Science 3: 38-41

ABSTRACT During centrifugation for 3 hours at speeds of 185 ren
and 30 rpm, adust Calloobrackus vaccilatus laid opps at regular intervals
on host seeds. The centrifugation caused no significant change in the
number of eggs 1.1d, number of visible eggs, developmental period from
egg to adust and flooperity of edielit.

Centrifugation at speeds of 660 rpm, 1000 rpm and 3000 rpm brought about a significant drop in the total number of eggs taid and the number of viable eggs also was reduced.

When continued at 4000 rpm and 50,0 rpm, the weavil elected the

When centifuged at 4000 rpm and 50.0 rpm, the weavil ejectral the eggs in a heap on the glass surface of the container and subsequently the female died. There was a highly significant drop in the number of eggs laid and viable eggs.

It appears that centrifugation of College-ruchus macrolarus at lower speeds does not cause any harm, but centrifugation at higher speeds affects both the egg laying capacity and the vability of eggs.

Introduction

The cowpea weevil, Colleaghenchus maculatur is an important pet of various pulse crops in Africa, India, the middle and Far East (till, 1975). In infilities considerable damage to coopea seed. Indication which commenced or mature poids and seeds in the field, persists and increases during storage (50%) 1983. Female lash pier eggs on the surface of the cowpea and the newly habid larvae tunnel directly into the kernal, ultimately the interior of the cowpea of virtually destroyed by the feeding activity of the develonic larvae (Storer, 1971).

The principal method of controlling this pest is funigation with methyl bromide in the stores (Metcalf and Flint, 1979). An alternative method of effective control other than funigation would be desirable.

An attempt has been made in this study to determine the effect of horizontal centrifugation at different speeds on number of eggs laid, viability of eggs, developmental period from egg to adult and longevity of adult of Calless bruchas magularias.

Materials and Methods

A mass culture of Callosobruchus maculatus was maintained under laboratory conditions on cowpea seeds which were previously heated to 140°F for four hours conditions on the conditions of the conditions o and solved from these culture were used for experimental purposes.

In the experimental set-up, newly emerged adult C. maculatus (one female and two males) were allowed to mate and were introduced into a test tube (60 ml) containing 5g of cowpea seeds covered with fine gauze for ventilation. These test thes were kept in each of the centrifuge tubes which was left open in order to facilitate ventilation. The weevils were centrifuged for three hours. After centrifustion the test tubes were removed and observations were made until the

Control experiments were conducted concurrently with the same number of mervils which were kept in comparable test tubes and observations recorded until death of the weevils under similar conditions (87.8°F and 78%RH) but without centrifugation.

Results i) Number of eggs laid

armils die.

Egg laying started during the period of three hours of centrifugation. and continued after removal from the container. The mean number of eggs laid per single adult on host seeds was 100.8 and 96.6 at speeds of 185 rpm and 370 rpm respectively. In comparison with the weevils of the control experiments, the centrifunction at-this speeds caused no significant change in the number of eggs laid.

When centrifuged at 660 rpm, 1000 rpm and 3000 rpm, the eggs were not laid during centrifugation but laid after centrifugation. However the centrifugation at these speeds brought about a significant drop in the total number of eggs laid.

When centrifuged at 4000 rpm and 5000 rpm, most of the weevils (60%) ejected the eggs in a heap on the glass surface of the container and subsequently the weevils died. There was a highly significant drop in the number of eggs hid by the surviving weevils in comparison with that of the normal weevils. Most of the males were alive even after centrifugation at these speeds (Table I (a)).

2) Number of viable eggs

There was no significant change in the number of eggs hatched after centrifugation at 185 rpm and 370 rpm, when compared with the normal weevils.

Among the eggs that were laid by the weevils centrifuged at 660, 1000, 3000, 4000, 4 5000 rpm, a significantly smaller number hatched out than those from the control experiment (Table I (b))-

3) Developmental period from egg to adult and longevity of the adult.

There was no significant difference in the developmental period (around 23 days) from egg to adult by centrifugation. But the longevity of adults is 4000 rpm and 5000 rpm. was reduced to 3.6 days and 3.4 days from 6.8 and 6.6 respectively (Table I (c)).

Discussion

The control of insect pests by horizontal centrifugation has not been attempted before. It appears that centrifugation affects most of the systems of insects, causing death. The effect of centrifugation on C. maculatus was experimented in this study.

It was found in this study that centrifugation of the weevils at lower speeds (185-370 rpm) has not affected the number of eggs laid, the number of viable eggs, developmental period and lon evity. It appears that the week could withstand such centrifugation. However, the centrifugation at higher speed

Table 1 : Effect of centrifugation on (a) Number of eggs (b) Number of viable esse (c) Longevity (days), of C. maculatus. (rpm = Speed of centrifuge) *Significant (P=0.05)

rpm	Co	ntrol		Centrif	uged v	veevils		Difference		
	(a)	(b)	(c)	(a)	(b)	(c)	(a)	(b)	(c)	
185	105.5	62,8	6.9	100.8	60,2	6.7	4.7	2,6	0.	
370	101.8	56.5	6.5	96.6	51.5	6.5	5.2	4.0	0.0	
660	98.3	59.2	6.8	70.0	47.0	6.3	*28.3	*12.2	0.	
1000	93.5	58.0	6.1	59.0	33.0	6.0	*34.5	*25.0	0.	
3000	100.1	61.4	6.5	59.3	32.0	5.4	*40.8	*29.4	•1.	
4000	91.0	57.0	6.8	32.0	15.0	3.6	*59.0	*42.0	•3.	
5000	95.0	58.5	6.6	15.0	10.0	3.4	*80.0	*48.5	*3	

(660-3000 rpm) caused significant drop in the total number of eggs laid and the number of viable eggs. Obviously, the centrifugation at these speeds has affected the fecundity. This was probabaly due to physiological disturbances caused it the developmental stages of the occytes. Such centrifugation did not cause considerable change either in developmental period of the larva or longerity of aduit.

When centrifuged at still higher speeds (4000-5000 pms), most of the times expected the eggs which did not develop at all. Centrifugation at times speeds too caused a topy of the number of eggs skid, the number of viable speed caused mortality in the number of eggs skid, the number of viable speed caused mortality in the property of the manufacture of t

Although fumigation has been the method of control of the past, the centrifugation method gives an effective control of framels and reduces the possibility of development of eggs of the weels. This method of control is promising if the treatment had to be avoided for very specific reasons. Besides zightes some fedication on the effect of gravitational force on egg development which may have morphogenetic significance related to polarity and development of physiological gradients during egg development.

Acknowledgement

We are grateful for the staff of the Department of Zoology for their kind assistance provided for this study.

The contents of this paper was presented at the Sri Lanka Association for the Advancement of Science, (Sakunthaladevi Ampikaipakan and Ganesalingam, V. K. 1985) and forms part of the M. Phil Thesis of the University of Jaffan of the first subtraction.

References

Hills,S. (1975) Agriculture insect pests of the Tropies and their control. Cambridge University Press. London. 516 pp.

Metcalf, C. L. and Flint, W. P. (1979). Destructive and useful insects. Tata Mc Graw - Hill publishing company Ltd. New Delbi, 1087 pp.

Osuji, C. N. (1981). Radiographic studies of the development of Callosobruchus maculatus (F.) (Coleopters: Bruchidae) in cowpea seeds. J. stored Prod. Res.

18(1) 1-8.
Sakunthaladevi Ambikaipakan and Ganesalingam, V. K. (1985). Effect of horizontal centrifugation on egg laying capacity and survival of Callosobrachus maculatus (Fabricus) Coleoptera: Bruchidae). Proc. Sri Lanka Assoc, Admst. Sci. 41 (1): 31

Sci. 41 (1): 81
Storey, C. L. (1978). Mortality of cowpea weevil in a low oxygen atmosphere.

J. Econ. Ent. 71, 833-834.

HEAT STRESS IN SRI LANKA -- A HUMAN CLIMATIC APPROACH

MANICKAM PUVANESWARAN

(Department of Geography, University of Jaffna, Jaffna, Sri Lanka)

Vincenses - Journal of Science 3: 42-58 (1988)

ABSTRACT Human Thermal climate of Sri Lanka was studied on the basis of heat stress. Theoretical and semi-empirical expressions were used for each individual heat exchange term in the steady state energy balance of a naked, average person standing at rest and facing the sun. Heat Stress on such a reference individual has been calculated from air temperature, vapour pressure, global soler radiation and wind speed for 22 meteorological stations in Sri Lanka on the basis of four weather 1005005

Introduction

In the past few years there has been a growing interest in using the Energy Balance approach to quantify the environmental impact on man. Of the interactions between man and his atmospheric environment, thermal or heat stress is more easily quantifiable than others. In the recent past a number of model have been developed to relate the man-environmental relations on the basis of the energy balance approach.

The energy Balance approach devised by Terjung (1966, 1976) for the United States, employing some estimates of all the four basic climatic parameters such as mean monthly maximum and minimum temperatures, mean monthly humidities, hours of sunshine and wind chill, delineate areas of effective temperature comfort zones. The scheme of effective temperature was first proposed by Houghten and Yogloglou (1923 a&b) as a tool of measuring heat stress for indoor sedentary man. However, despite its comprehensive nature, the scheme was not based on meaningful relationships between simultaneous data. Landsberg (1972). Auliciems (1973), and Auliciems and de Freitas (1976) used calorific insulatation requirements for a variety of metabolic rates in Canada, using empirical heat exchange constants applied to simultaneous observations of cloud cover, temps ature and wind velocity at specified hours. The scheme was successfully applied to the Australian environment and the results proved that it had grater applied ablity. As Auliciems and Kalma (1979) indicated, "the proposed procedures can be used with minor adjustments as well, either for the climatic classification of for the estimation of thermal stress at any given environment. This scheme is presently used to measure heat stress in Sri Lanka

Before proceeding to explain the method in detail, it is important to see the Island's weather conditions in order to assess the heat stress situation of this tropical Island. Sri Lanka is an island situated at the South-eastern tip of todis. The island is located close to the equator and list between the legitides of 79° and 87° North and between the longitides of 79° and 81° North and between the longitides of 79° and 81° North and between the longitides of 79° and 81° North Albough, 5° Lanka is small in size, remarkable variations can be seen in its master and the seen in the the seen in

Table 1: General Weather Seasons of Sri Lanks

	Mo	onths	Season		
¥	March May October December	April September November February	Convectional Season South West Monsoon Season Convectional Season North East Monsoon	. ,	

These accooss have been classified enaisty on the basis of wind and rainful variations. However, variations in the temperature over the island are not significant. The annual range of temperature is not more than 70° F in any part of the Island, and there is little difference in the height of day, unlike the conditions near the poiles during summars. In Colombo, the longest day which have been been considered to the poile during summars and the state of the falls on the 22nd of June 10 only 48 minutes longer than the shortest on the 23nd Obcember. In Jaffins, it is 68 minutes longer while in Galle it is only 42 23nd Obcember. In Jaffins, it is 68 minutes longer while in Galle it is only 42

The heat is also considerably, ameliorated by the thick clouds which form during the hottest part of the day; these interfere with the transission of radiant energy in the air and protect land very considerably.

Powerful insolation throughout the year is a remarkable feature all over the island. However, the rainfall variation among the weither seasons, cloud and wind play a significant role in ameliorating the heat steres continues. For example, when the seasonal dry weather prevails during the monit of May to Sognetic when the seasonal dry weather prevails during the monit of May to Sognetic when the terms of the property of the property of the property of the in all parts of the dry zone, high wind preed supplies the heat stress conditions. When the wind speed falls, then excess sweating and discomfort results. Since not vary as much as in temperate regions where extreme negative and position at reason conditions are found in winter and summer respectively. Reasonable has trestes variation arises from altitude. For example Navana Biya (1830 m) above a negative attest condition due to its lower temperature caused by the environmental layer arts. However, these negative heat stress values are insight when compared with the cold stress or lengthve heat stress plures of winters caused in temperate region. Here cold stress or negative heat stress fugures of winter season in temperate region. For example, in Australia the negative heat stress value ranges from 100 wests to 900 watts in the winter season Actionicem and Kalma, 1969.

Although several studies in bio-climatology have been carried out in other countries no such studies had been done in Sri Lanka in this field unit 1981.

The present work is a quantitative human heat stress study which is besed on standard climatic data.

Materials and Methods

The Energy Balance approach is a modern technique which aids in the evaluation of the environmental impact such as heat and cold, upon the human body. The components of this energy balance equation satisfy both environmental and body heat regulation processes.

In this study the heat stress of a tropical Island was calculated from an equation which was derived from various methods developed in bio-mesorology particularly in human climatelogy. In this scheme the heat stress of the steely state energy balance of a necked, average person, standing at rest and facing the sun is calculated by using air temperature, upony pressure, global solder radiation and wind sender.

The complete equation for calculating the heat stress is as follows:

 $HS = [132 + (Q+q)_m - (12.3 + 26.2 \text{ Vo.5}) (35 - T_B)]$

exp [0.6 (E/Emax - 0.12)]

where, HS = Heat Stress. $(Q+q)_m = net (direct -Q, and diffuse -q) solar radiation on man, <math>V = wind$ velocity in $m s^{-1}$, $T_n = air temperature$, E = evaporative heat loss and <math>Emax = evaporative capacity of the nude body. The details of derivation of this equation are fully discussed in Appendix I.

Data:

Heat stress was calculated with the aid of the Thermal Stress equation for 22 meteorological stations which are fairly representative of the Island. Considering the weather seasons of the Island and the movement of the sain in Sr Linki. We have selected five m baths and six time periods of the above seasons for had stress calculations. This is given in the following Table.

On the basis of this classification, may were drawn to libertare, the next distribution of the heast stees. Daw for the traces classification were taken from published and unpublished manuscripts from the Châ mb on neonlogical department, Maximum temp-rature, average heading we declarify, color of department, and air pressure were used with the average for the stacked partial of 1311 60. "Women pressure (Pa) was calculated from the format given bellow:

winter solstion.

Month of North East Monsoon and

$$P_{B} = \frac{P_{f} V - (P_{B} - P_{w}) (t - t)}{P_{B} - P_{w}}$$

21st

2800 — t^r

December

where, P'V is actual vapour pressure, in psis, (Appendia V), P'w is vapour pressure corresponding to the wet bulb temperature in psis. Ps is total air Pessure. (Appendix VI) in psis, t = is dry bulb remperature in degree F, and U = is wet bulb temperature, in degree F (Appendix VII).

Son angle and solar elevation for a particular losation were calculated from latitude, date and time with the aid of the sandard attranomical lates. Standard ground sladed figures were taken from the meteorolosical glossay with the consideration of the lard use pattern of the island. The above data were mixed to civiliate thermal streets for every selected beaction of the Island-Beat Streets was calculated for 1500 LST for the months above in the Table 2 for St Lankar and the values were obtained for a representative day.

Results and Discussion

Heat Stress was quantified using climatic and physiological paramoters with the aid of the scheme developed by Audicines and Katama (199). The scheme is applied to an average man standing out doors, excluding any deating insulation and standardaring his metabolic rate and in upright posture facing the sun. By solving the best stress formula, the values of heat stress were offer that the without and they were ploted against the locations which are very well distributed and they were ploted against the locations which are very well distributed and which are well represented over the Island. Heat stress was calculated for selected months according to the movement of the sun and the weather seasons of the Island.

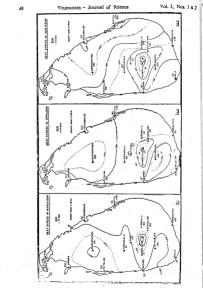
March 21st and September 23rd are the months and days referred to a versal equinos, and autumn equinos in which the middlesy usn is located very dons to the equator, it was realized that it will be useful to study the pattern of the thermal stress on hese days. Similarly 8th April and 3th September are also taken for heat stress calculations due to the fact that these are the months and days receiving the sum rays directly overhead (6°) at closumbo and for a considerable period before and after those two dates the rays are nearly vertical. The months of March and April fall on the first convectional season in the weather of months of March and April fall on the first convectional season in the weather of

June 22nd is the summer solstice and it is also within a representative day for the south west monsoon season.

Similarly, December 22 which is in a representative month for the north ast monsoon referred as the winter solstice, in which the sun's rays come into contact with any segments of the surface at its lowest angle in Sri Lanks, Howerth is angle in never lower than 57° above the horizon at midday. Taking the full angle into account, the above months and dates have been solveded for heat stress contrastons:

The 21st of March is the day of the vernal equinocs. On this day the lost angle for every part of the histod is more than 80°. The nual's rays striking at a hist angle noticate that any part of the faland receives intense radiation better in March, a smaller region around Nuranza Elijas is close to neutrality and student the negative thermal stress (-11W) which is mainly due to the effect of the alluished however, below this clevation a greadul increase in heat stress towards the intense of the control of the state of the stress of the state below + 200%, and it count no positions the increasing heat states the cleve of the state of the state below + 200%, and it is count no positions the increasing heat states trend. Americalspura receives the highest heat arress in these most heat processing the state of the st

of the sea breeze mainly because of its interior location would have caused this pattern. Clouds forming over the sea, certainly have an effect on the solar ediation at the coastal stations. (Fig. I.)


Figure 2 shows the pattern of heat stress in April. As mentioned earlier, so that the part of the part

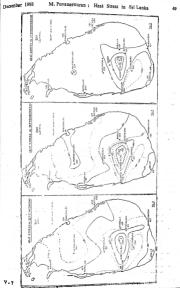

Not much variation in heat stress can be seen between the above two most secopt for a slight increase in April. The scatter coastal region shows higher heat stress conditions than the ventern coast. As this region is experiencing thunderstorms with lower complonismum colouds; in the above months, these weather phenomenon should have been influenced by increasing cloud reflection of incoming solar radiation in the western part. Therefore, no remarkable trend in direction is seen in the distribution of heat stress value.

Figure 3 illustrates the heat stress distribution for the month of Janc. This numerical features according to the weather which prevails in this most has take that Januar's weather into the overall control of the south west momenous takes that Januar's weather into the overall control of the south west momenous relief to the property of the control of the south west momenous relief to the property of the tent of the property of the property of the tent of the property of th

The sun is directly overhead at noso in Colombo on Spirember 5th and on the 8th of April. When we compare Fig. 5 with Fig 2, a clear relationship is seen between the patterns of heat stress. However, the neutral region is much wider than in April and negative heat stress coorar (over 1009) a round Nuwara Biya. Although, no snow full has ever been observed in the Island, temperatures in deep valleys of the high land over 1830 m drops below freezing point. Such condition is responsible for the negative thermal stress.

Figure 5 shows the heat stress on 23rd September, which is the Autumn Equinox. There is not very much variation of heat stress compared to 5th September. High heat stress still prevails on the northern low land particularly around Auturahapura and Trincomalee.

December is the representative month for north east monoton teston and its referred to as the wister. Solvino. The highest negative heat stress present at the height of over 1830 m in December. (Fig. 6. The 200W hast stress present at the height of over 1830 m in December. (Fig. 6. The 200W hast stress are at the height of the manyor of the stress and Amarshams are the only two stations which are receiving heat stress allow laight which the are the only two stations which are receiving heat stress allow the state between 200. Most part of the northern and eastern regions received between 200. Solvino and the state of the state of the control of the state of th

Conclusion

The tropical location of the Island favours intente insolution throughest year. High intensity of the surfar vays falls on the surface of the Island. The sun's movement make only negligible variation in insolution, Thurefore, high intent action throughout the year on the island causes high heat stress. However, monasconal airflows have significant influence on heat stress distribution. While heat stress occurs on the lowards areas, negative heat stress provals in the highlands particularly over 1830 m. However, high heat stress is a dominate feature in most parts of the Island at all selected periods. The quantified version of heat stress and its spatial vertainton shown in the figures will certainly give a greater insight into the environmental impact on the human body.

Acknowledgement

Sincere thanks are due to Dr. A. Auliciems, University of Queenstand' Australia, for critical evaluation of the first offart which hed to useful modification and to Professor M. Youtino, Fresident of the International Goographical Union during 1982, who made it possible for this paper to be presented at the 100 Working Group on "Fropical Clintanology and Human Settlement", held in Salvador Bahin, Brazil from August 22 to 28, 1982. My thanks are also due to mw wife Pathundardy who belood me in data reconstance.

References

- Auliciems, A. and de Freitas, C. R. (1973) and Hare, F. K. (1973) Winter clothing Requirements for Canada. Climatological Studies, No. 22, Environment Canada, Toronto.
- Audiciems, A. and de Freitas, C. R. (1976) Cold Stress in Canada: A human
- climatic classification. Institute Journal of Bio-meterology, 20, 287-294.

 3. Auliciems, A. & Kalma, J. D. (1979) A human climatic classification of human
- Thermal Stress in Australia. Journal of Applied Meteorology, 18, 616-626.

 4. Bedford, T. (1948) Basic Principles of Ventilation and Heating. Lowis, London, 402 pp.
- Breckenridge, V. R., and Goldman, R. F., (1972) Human Solar heat load. ASHRAE Transcotion, 1, 110-119.

6. Colin, J. Timbal, J. Guieu, C. Boutelier, E and Houdas, Y. (1970) Combined effect of radiation and convection, Chapter 7, In Physiology and Behavioural Temperature Regulation J. D. Hardy, A. P. Gazge, and J. A. J. Stolwijk, eds. Thomas, Springfield.

December 1988

- 7. Dubois, E F. (1927) Basal Metabolism in Health and Disease, Loa and Febiger Philadelphia, 256 pp. Gentilli, J. ed. (1971) Climates of Australia and New Zealand. Elsevier, 405 pp. Givoni, B. (1976) Man, Climate and Architecture, Elsevier, 483 pp.
- 10. Houghten, F. C and Yagloglou, C. P. (1923a) Determining lines of equal comfort ASHRAE, Transections 29, 161-176
- Houghten, F. C and Yagloglou, C. P. (1923b) Determination of comfort zone. 11. ASHRAE Transections, 29, 361-384. Landsberg, H. E. (1972) The Assessment of Human Bioclimate. A limited 12.
- Review of Physical Parameters, Technicial Note 123 WHO Monteith, J. J. (1974) Specification of the environment for thermal Physiology. 13. Chapter 1. In Heat loss from Animals and man. J. L. Monteith and L. E. Mount. Eds. Butterworths.
- 14. Nelson, N. Eichna, L. N. Horvath, S. M. Shellev, W. B. and Hatch T. F. (1974) Thermal Exchanges of man at high temperature. American Journal of Physiology, 151, 626-652.
- 15. Paltridge, G. and Proctor, D (1976) Monthly mean solar radiation statistics for Australia. Solar Energy, 18, 235-243. 16. Paltridge, G. and Platt, C. M. R. (1976) Radiative processess in Meteorology
- and Climatology, Elsevier 318. 17. Puvanoswaran, K. M. (1981) A human climatic classification for Sri Lanka using cloth requirement model. A paper presented at IGU working group
- on Geography of health. Held in Madras University, South India, published in the Sri Lanka Journal of South Asian Studies, New Series, No. 1 (1986/87) 18. Teriung, W. H. (1966) Physiologic climates of the conterminous United States:
- A bio-climatic classification based on man. Annals of the Association of American Geographers, 56, 141-179. 19. Terjung, W. H. (1967) Annual physioclimatic stresses and regimes in the United
 - States. Geographical Review, 57, 225-240. Terjung W. H. and Louie, S. F. F. (1971) Potential Solar Radiation climates
- of Man, Annals of Association of the American Geographers, 61, 481-500. 21. Winslow, C. E. A. and Herrinston, L. P. (1919) Temperature and Human Life.
- Princeton University Press, 272 pp. Woodcock, A. H. and Brechenridge, J. R. (1965) A Model description of 22. thermal exchange for the nudeman in hot environments, Ergonomics, 8,223-225.

Appendix I

Derivation of Heat Stress Equation

Energy Balance approach is a modern technique which aids in the evalution of the environmental impact such as heat and cold, upon human body, the components of this energy balance equation processes. This can be written as follows:

$$M_T \pm R \pm C - E = \pm S$$
 [W m²] -(1)

where, Mr is net metabolic heat production. R is long wave or infrared radial heat exchange (+ for net loss), C is convection beat exchange (+ for net loss), C is convection beat exchange (+ for net loss), C is storage within body issues, Wn', is engre If faut density in watts per square metrer of surface-area of body. When considering the thermo-regulatory process with the environmental factors, the heat dissipation obcurs in two ways:

 Those controlled by thermo-regulatory mechanisms wich respond to environmental factors and (2) processes which are either constant or largely secontrollable and are going on at all times irrespective of ambient warmth (Aulkiens and Kalma, 1979).

Of the second category the heat loss through the respiratory tract $\{M_1\}$ intentible perspiration $\{M_2\}$ and transformations into mechanical work $\{M_2\}$ with the typical examples. Quantitative data of respirations and perspiration loss have that these are remarkably constant and they amount to some 25% of the metabolis arts $\{D_{00}b_1, 1927, However, 2.0-80\%$ of the metabolic increase above the ball rate of 50 W_{m}^{-2} is transformed into mechanical work (Winslow and Herrigon-1949).

Lorg wave radiation and convection may be considered together as helt exchange (D) resulting in cooling in accordance with Newtonian principles, which directly apply to the human body over a wide range of environmental conditions (Bedford, 1948).

Thus:

$$D = R + C$$
 [W \overline{m}^2] - (2)

Thus equation (1) may be written: $M_T \pm D - E = \pm S$ $[W_m^{-2}]$ - (2a)

 $Mr \pm D - E = \pm S$ $[W_m^2]$ where.

$$M_T = M - (M_R + M_P) - M_W$$
 - (2b)

The Metabolic rate was taken for the upright standing posture with the M of 116 W m2 without any clothing insulation

53

December 1988 M. Puvaneswaran : The equation in formula (2a) has the required physiological parameters for

the heat balance calculations, Given appropriate data on air temperature, solar the near calling constants, heat stress (HS) may be estimated under a variety of physiological circumstances. Perhaps, it is most useful to assume that man is attempting to achieve maximum thermal comfort or neutrality only by sweating at a skin temperature of 35°C. Setting M at 116 Wm², (MR + Me) is 29 W m² and Mw = 0.25 (M - 50) is 16.5 W m². Mr therefore becomes 71 W m². Total metabolic heat loss is obtained by multiplying by A=1,86 m², the average surface area of man. (Terjung and Louie, 1971); Thus AMT is 132W.

D is dry heat exchange or portion of heat loss by a sweating man at 35°C. and D can be calculated as follows:

D can be calculated as follows:

$$D = h (35 - T_0)$$
 [W \tilde{m}^2] - (3)

where Ta is temperature of air, h is the combined coefficient of heat transfer to the air consisting of radiation (hr) and convection (hr) components. A large number of both theoretically and empirically based calculations have demonstrated that the long wave radiation component br may be regarded as a constant in homogeneous environment (Auliciens and Kalma, 1979). Since Sri Lanka is an island and its areal extent is very small, this factor is taken as constant. Loss through convection, on the other hand, (he) varies according to the rate of air motion. These combined heat transfer coefficients have been estimated by various researches by experiments (Nelson et al, 1947, Woodcock and Brechenridze, 1965, Colin et al, 1970). The equation by Nelson et al (1947) closely corresponds to the general formula proposed for day heat lossess from both men and animals (Monteith, 1974) and it is a very well known equation.

[W ≅2 °C •1] h = 6.6 + 8.7 V 0-5 -(4)where, V is wind velocity in m S -1 (Appendix II)

E, the evaporative heat loss is equivalent to the actual sweating rate of human body.

body,

$$E = AM_T + (Q+q)_m - AD$$
 – (5)

where, (Q+q)m is net solar radiation load on man. A is average surface area of man, Mr is net metabolic heat production, D is dry heat exchange.

Evaporative heat loss is equivalent to the amount of heat which has not been eliminated by long wave radiation and convection,

Solar radiation data is an essential component to solve the heat balance formula. However, no instrumentally measured radiation data is available in Sri Lanka, Due to lack of insolation data in Sri Lanka, radiation in this case was calculated with empirical methods described by Paltridge and Proctor (1976) and Paltridge and Pintt (1976) based on cloud cover observations. First Qh the direct clear-sky radiation on a unit horizontal surface per unit time is calculated from the following formula (Appendix III).

 $Q_h = 1000 [1 - \exp(-0.06x)] (1 - \phi) Sin \propto [W \overline{m}^2] - (6)$

Where. ∞ is solar angle (degree) and ϕ the observed fractional cloud cover (0-1). S. lar angle ∞ is calculated from the coordinates of the station concerned, its time zone, date and station time.

The total (Global) radiation on a horizontal surface per unit time $(Q_b + q_h)$ is then calculated from:

 $(Q_h + q_h) = I_0 (1 - \alpha \phi) [1 - k_i - k_{ii} (1 - \phi)] \sin \alpha \quad [W_{m^2}] - (7)$

where, Qh = Direct clear-sky radiation on a unit horizontal surface per unit time,

Qh = Diffuse radiation on horintal surface. (W = 2)

Io = Solar constant. (1353 W m²)

a, -Mean could albedo taken at 0.5 (Paltridge, 1973).

K₁ = Absorption due to H₂O Vapour set at 0.18.

K11 = Albedow of clear sky in fraction (1 - φ) calculated from Paltridge (1973)

It then follows that: $q_h = (O_h + q_h) - O_h$ $[W_m^{-2}]$ - (8)

[w=(Qn + qn) - Qn [w m²] - (

The net direct radiation falling in the vertical human body surface Qv is obtained from:

Ov = AA: (Ob / Sin *) (1-ab)

[W1 = (9)]

Qv = AAi (Qh / Sin =) (1-ab) [W] - (9)
where, A₁ is the fraction of body area, A₁ is receiving radiation on a plane
normal to the beam (measured from intersept area for specific angle by
Breckenridge and Goldman (1972) and ab the albedo of the human body.
NR diffuse padiation q- falling on the vertical body surface is calculated from

 $q_V = A(A_Z + A_V / 2) \ q_h (1 - a_b)$ [W] - (10) where, A_Z is the fraction of A facing zenith and A_V the fraction facing

horizon. (Breckenridge and Goldman, 1972).

If Q_0 and q_0 are the direct and diffuse radiation reflected by the ground and falling on the vertical body surface, then: $Q_0 + q_0 = (AAv/2) (Q_0 + q_0) (\cos z \cdot a_0 (1 - a_0)) \quad [W] \qquad -(11)$

Here, a_q is the fractional albedo of ground obtained from Gentilli (1971) and α the solar angle (degree).

The net solar radiation load on man become.

 $(Q+q)=Q_V+q_V Q_Q+q_Q$ = $A(1-a_b)(A_iQ_h/Sin =)+[(A_z+A_V/2)q_h]+[(A_V/2)(Q_h+q_h)(cos =)a_Q].$ [W] -,12)

Given that A=1.86 m2, as is the albedo of dark skin and set at 0.3 and Az = 0.1, Av = 0.6 for a standing person facing the sun, it follows that

$$(Q + q)_m = 1.12 \text{ Ai } Q_h / \sin \alpha + 0.45 \text{ qh} + 0.34 (Q_h + q_h)$$

 $(Cos \alpha)$ aq $[W]$

The calculation of net direct and diffuse solar radiation absorbed by the human body (Q + q)m thus depends on the solar elevation and surface albedo.

When radiation R and convection C fail to eliminate the heat load of the human body, active sweating may be expected to occur once the temperature of skin reaches 35°C. The evaporation term E in equation (I) then represents the amount of latent heat of vaporization required to be removed inorder to maintain homeothermy but as such it does not indicate the levels of inefficiency involved in sweating processes. This depends on the rate and place of evaporation and the amount of energy drown from the adjoining air. Lower efficiencies are clearly associated with higher sweating, i.e. excess sweating. Givoni (1976) bas expressed such excess sweating in terms of a cooling efficiency factor in his Index of Thermal Stress formula. This may be regarded as equivalent to :

$$HS=[M_T + (1/A) (Q+q)_m - D_{ii}] (A/f)$$
 [W] - (14)

Where, HS is the heat stress, which is equivalent to the total amount o sweating per unit time, and according to Givoni (1976), (f) is the cooling efficiency of sweating:

$$1/f = \exp [(0.6 \text{ (E/Emax } -0.12)]$$
 - (15)
with $1 \ge f \ge 0.29$,

The actual sweating rate E=M_T + (I/A) (Q+q)m - D_{ii} is equivalent to the amount of heat which has not been eliminated by long-wave radiation and convection

Emax in formula (15) is the evaporative capacity of the nude body. This can be calculated from : - (16)

Where, Pa is the vapour pressure of air in mmHg; and 42 mmHg represents the vapour pressure on the surface of the skin at 35°C and V is wind speed (ms -1).

Considering all the factors mentioned above, the heat stress or Thermal Stress of a human body, expressed as a positive thermal stress can be written as follows:

 $HS = [132 + (Q + q)_m - (12.3 + 26.2 \text{ V}^{0.5}) (35 - T_0) \exp$

- (17)

Appendix II Wind velocity m s -1 $ms - \frac{(Vmph)}{30} \times 0.44715$)

	Representative Months							
Station	March	April	June	September	Decembe			
Colombo	1.55	1.63	2.38	2.23	1.89			
Puttalam	1.80	1.98	4.08	3.65	2.41			
Mannar	2.83	2.47	2.34	3.57	2.59			
Jaffna	1.60	2.83	5.90	5.10	1.64			
Trincomalee	2.32	2.28	4.84	3.65	4.10			
Batticaloa	2.42	2,11	2.20	2.16	2.86			
Hambantota	3,63	3,37	5.14	5.22	3.95			
Galle	2.02	2.49	4.37	4.02	2.10			
Ratdapura	0.95	0.98	1.36	1 22	. 0.83			
Anuradhapura	0.95	0.98	1.36	1.22	0.83			
Kurunegala	1.09	1.06	2.37	2,23	1,04			
Kandy	1.36	0.88	1,37	1.41	1.13			
Badulla	1.27	1.12	2.01	1.49	1.22			
Diyatalawa	0.88	0.92	1.91	1.36	0.97			
Nuwara Eliva	2.19	1.40	3.77	2.37	2.20			

riuwata Enja	W117	1,10			1101	2.40
			Appendix	III		
	Dire	ct Clear	Sky Radi	ation on a U	nit	
	Horizoatal	Surface	Qh (Ce	lculated data)	W m2	
Stations	March	April	June	Sept 5th	Sept. 23rd	Dec. 12:
Colombo	463	398	142	219	217	335
Puttalam	590	537	207	348	344	318
Mannar	588	590	204	308	304	286
Jaffna	636	496	308	407	401	308
Trincomalee	551	478	230	298	325	249
Batticaloa	491	.447	274	378	393	246
Hambantota	523	428	254	378	375	330
Galle	474	388	237	328	356	339
Ratnapura	395	308	168	249	247	235
Anuradhapura	540	400	222	278	324	272
Kurunegala	502	378	175	289	276	275
Kandy	522	398	150	279	276	270
Badulla	503	328	318	348	404	235
Diyatalawa	444	- 348	260	279 .	336	185
Nuwara Eliya	424	308	84	189-	187	243

Appendix IV

Diffuse Radiation on Horizontal Surface

Ob = (Ob + on) - Ob [W m²]

		Qu-(Qu-	Ru) - Gu	f as mal		
Station	March	April	June	Sept. 5th	Sept 23rd	December
Colombo	299	239	379	419	419	285
Puttalam	235	218	348	355	352	291
Mannar	235	152	338	419	415	292
Jaffna	212	284	277	327	324	288
Trincomalce	225	290	326	391	359	323
Batticaloa	302	307	304	351	329	320
Hambantota	266	314	327	338	337	290
Galle	290	328	333	381	350	288
Ratnapura	330	419	365	402	300	332
Anuradhapura	259	329	330	412	359	306
Kurunegala	279	338	360	375	383	331
Kandy	256	331	368	385	383	326
Badulla	279	362	291	387	326	330
Diyatalawa	306	355	322	315	357	359
Nuwara Eliva	313	419	403	429	427	328

Diyatalawa Nuwara Eliya	313	419	403	429 421	328
		4	ppendix V		
rectiently.	Vap	our pressure	[Psia] (Ca	lculated)	-
Stations	March	April	June	September	December
Colombo	24,0	25,8	26,3	24,7	22.4
Puttalam	23.4	25,9	25.1	23.3	22.5
Mannar	23.5	25.2	25.5	24,4	21,6
Jaffna	23.0	25,9	24.0	22.4	21.4
Trincomalee	23.4	25.2	22,2	22,3	21.1
Batticaloa	24.5	25.3	21.8	24,3	22.5
Hambantota	24.3	25,9	24,4	23.9	22.9
Galle	25.0	26.7	25.2	24.5	22.9
Ratnapura	23.1	25.1	24.9	24.1	23.6
Anuradhapura	22,7	24.7	22.6	20.8	20.7
Kuronegala	22.7	23.6	24.5	23,2	15,0
Kandy	21,7	20,7	21.4	20.8	20,0
Badulla	20.6	21.5	21.7	18.5	20,1
Diyatalawa	17.0	17.5	15.8	15.5	17.2
Nuwara Eliya	13,8	13,3	13.9	13,6	13.4

Appendix VI Air Pressure (mb)

Stations	March	April	June	September	Decembe
Colombo	1010,25	1008,75	1009.6	1008.85	1014.9
Puttalam	1010.55	1008,75	1008.85	1008.3	1010.65
Mannar	1010.65	1008.45	1007.45	1007.45	1010.8
Jaffna	1010.95	1008.3	1007.05	1007.1	1011.06
Trincomalee	1010.55	1008,2	1067.0	1006,95	1010.01
Batticaloa	1010,6	1008.5	1007.3	1007.3	1010.08
Hambantota	1010.15	1008.45	1008.55 .	1008.15	1009.45
Galle	1010.45	1008.8	1009.8	1009.2	1009,75
Ratnapura	1010.45	1009.8	1009.8	1009.2	1009.85
Anuradhapura	1001.1	998.2	997.8	997.25	1000,2
Kurunegala	996.65	995.2	995.75	995.1	996.6
Kandy	957,3	956.1	956.3	955.6	956,85
Badulla	936.4	934.8	934.0	933.7	93565
Divatalawa	\$76.4	875.15	874,5	874.1	875.3
Nuwara Eliya	814	813.2	812.4	812,05	812,45

Mean Wet Buib Temperature (*F)							
Stations	March	April	June	September	December		
Colombo	79.2	80.6	80.0	79.0	77.4		
Purtalam	79.2	Si.1	73.5	3.4	74.9		
Mannar	79.0	81.5	50.4	79.4	76.6		
Jaffea	75.5	81.3	78.3	79,7	75.9		
Trincomalee	75.3	80,5	78.6	75.7	76.4		
Suriaka	3.6	80.7	79.4	79.9	76.9		
Hambanova	79.2	87.5	79.2	78.3	77.8		
Galle	75.4	\$2.1	72.2	7.3	77.3		
Kapaspura	73.4	80.2	79.7	74.3	78,5		
Anuredbapunk	77.0	87.5	3.2	7.3	76.4		
Kugunesala	3.0	\$7.4	74.1	78.2	76.7		
Kann	75.0	3.1	75.1	74,7	4.3		
Nadiulia.	73.4	75.0	76.2	73.3	75.3		
Dyanshwa	08.0	77.3	57.7	67.5	50.5		
Numera Eliya	02.5	34.5	60,0	62.7	52.1		

Stoomer for puriousee March 1998

இதழ் 3

1ம் 2ம் வெளியீடு

JOURNAL OF SCIENCE

விஞ்ஞானம் இதற் 3னது வெளிவீடு எமக்க கட்டுப்படுத்த இயனத சூழ்நிலவகள் வால் தாமதப்பட்ட நாடன் மிண்டும். இரு வெளிவீடுகளை சேர்த்து ஒன்றாக பிரசுகிக் கும் நிலை ஏற்பட்டுள்ளது.

ஏனைய இதழ்களைப் போல இதற் 3இனும் ஆய்வுரைகள் எமது பிரதேசத்திற் குரிய பிரச்சனைகளுடன் தொடர்புடையதாகும்.

ளமது விவசாய விளைபொருட்களின் உற்பத்டுவின் குறிப் பிடத் தக்களவு செலவு பிடைகள் தோய்களின் கட்டுப்பாடாகும். வெளியீடப்பட்ட கட்டுரைகளில் ஏழில் ஆற இல்லகையான ஆராய்ச்சிகளுடன் சம்பந்தப்பட்டது.

திரந்துவி இராமதாகும், கியாமன் ஆடுப்பாது ஆம்புகட்டுரை மாழ்ப்பாகக் கொண்ப்புகிற ஒரு பொறுவாகு , வக்காய இனக்கும் முரனிகைக் கடுப்படுப்துவ கிய மங்க கொங்கிகளிக் சுகியான மாவணமோடு சம்பத்தப்பட்டது. இவிகளி கடிற தார்ட்டை வெள் பூழ்நான தோகியான பாத்துவர் துரமாய் முர்சமையாக உள்ள தாரட்டை வெள் பூழ்நான தோகியது விறுத்திலி ஒருகிற்றிய வராவிகளின் அக்கம் படுதிய கண்டுக்கும்

பத்பினி மகேஷ்வரன், கணேசனில்கல் ஆடுபோர் வேப்பம் விதைகளிலிருந்து பெறப் பறம் வேப்பம் புண்ணாக்கினது பூச்சி கொள்ளி பண்புகள் பற்றிய ஆர்ஸ்மிக்க நகவலை தந்துள்ளனர். இது சேதன விவசாயத்தில் ஆர்வறன்னோர்க்கு ப்ரயோசனமானது.

இரு ஆய்வுக்கட்டுரைகளில் பினடகளின் முட்டையிருந்தி பற்றி விளக்கப்பட்டுள்ளது. இராபிறுகிறாற், ரஜனி இராபிறுக்கரான் ஆலியோர் ஒரு விராட்டிற்றில் படுக்கியப்பட்டுர். முட்டையின் வித்தியை விக்கின்றனர். இவிகளர் கட்டுரையின் சருந்தனர்கள் அக் சிகையாகள், கணேசலிற்கள் ஆலியாள் ஒரு பூசிப்பிடையின் முட்டை விருநிறின் வைய நிக்கத்தின் விளையை அறிகித்துள்ளனர்.

இராறேந்திரம், அனேற் குண்டுவ்கத்துடன் தமது இரண்டாவது கட்டுரையில் ஒந இலங்கைரிதுள்ள தெல் பீடையின் ஒன்றியலாழி பந்தி குறிப்பிட்டுள்ளார்.

ருழ்க் காகநிகை தற்போது பகிப்புறவை பிற்குவை காந்த பட கிறந்து இதற்கு காப்பித்த தடிப்பாறில், புகிவங்களின் கடிப்புகளை இது சி பித்ப்பட்டதாதும், பட வருட்குக்கும் வளிது திருக்கும் அரசுபட்டி இதற்குக்கி வெப்ப அருத்ததில் விண்டி நிறைக்கும் அனிற நடக்கும் இதற்கைத் தாட்கும் முதல் காகுக்களை திறக்கும் மறக்கி பகுத்பியல் இது அது நாட்கும் முதல் பியல்

Gto 1989

பேராசிரியர் சேசு, உற்தையா இதற் ஆசிசியர் 60

Vingnanam J. Sci. 3 (1988)

இவ்விதழ் கட்டுரைகளின் சுருக்கங்கள்

ALTERNARIA ALTERNATA (Fr.) Keissler இனது உயிரியலும் அதன் விருத்தியில் பங்கசு கொல்லிகளின் தாக்கத்திற்கான ஆய்வுகூட மடுப்பீடும்.

ஆயவுகூட மதுப்படு

திரஞ்ஜனி இராமநாதன்

(தாவரலியக் துறை, யாழ். பக்ககைக் கழகம்.)

அ. சிவபாலன்

(உயிரியல் துறை, பிரித்தானிய சுபானா பல்கலைக்கழகம், சுயானா).

Vingnanam J. Sci. 3:1-9 (1988)

montant :

m@4mm

மங்க விதி முகைத்தம், பூற்-கைவை வளர்கி கில ஆயெலற்றி இர தொடுகிறிற் படல் செல்விகளிலும் (benom), boxcop அரவு தெருகிறமும், பல்கல செல்விகளிலதும் (முறாலர். mocetan, pomanol, sulphu, brasicol, montacol, diffolium, decoul) பி. அ.க. கல் (மிற்று வைசலியை செலுவிலும் தாக் கல்கம், ஆஸ்டி க... அறில் அரசுபடும்...ட்டன. (முறாலர் தனிற்த விறு என்ன பக்க கோக்கிலது, ஆஸ்டி க... அறில் அரசுபடும்...ட்டன. (முறாலர் தனிற்த விறு என்ன பக்க கோக்கிலதும் அறிலு முகைத்தகை 10 நாக் செலியம் பாடுத்தன.

மில் உழிநாக வளை வளர்சி சிதம் வெடியேறு மிகக கொகிக்கிற பிகும் மட்டது. DiGistan doconil, henony), pomarci ஆகிமும் 9 தொடக்கி 500 ppm வரச மான செறிவுக்கில் பூறிகை வகை வளர்சிக்கம் பாறித்ததுடன் 1000 ppm செறிவி குறிதாகி அடை செழ்தா. Moretta, bessiolo, monti, buyor, attendo ஆகியக 10 தொடக்கம் 1000 ppm வைரசிகான செறிவுக்கில் வளர்சிகைய் அமிபிடத்திகளை அதைத்தல். இவரசி, பிறிவா அதிபிடத்திகளை

பங்கசானது பொதுவாக daconil, benomyl அல்லது pomarsal கொண்ட ஊடகத் இல் மூன்று நாட்களில் இறக்கச் செய்யப்பட்டது.

மேற்கறிய ஆய்வானது benomyl, daconil, pomarsol போன்றவை Alternaria alternate வக்கட்டுப்படுக்கப் பாலிக்களா மென்பதனைக் காட்டுறெது இராட்சை வெண்பூர்தசண நோம் தோற்றப்ப§தல், பரம்புதல் ஆலிய வற்றிற்குரிய வெளிக்கள அவதானங்கள். _கரிக்கர்:

திருந்தனி இராமநாதன்

(தாவரவியல் துறை, யாழ், பங்களைக்கழகம்.) Vinenanam J. Sci. 3: 10 – 19 (1988)

எருக்கம் :

வரப்பாளதில் இராட்கைக்கும் வெள் பூர்வா முர்வர நோல், நாக்கமாற அறி, வர ஏர்ப்புக்க, நாடு வெட்டுகை மற்றும் பரி தொற்றும் அன் அகைத்தும். இன் தாகிக்கப்பட்டது. தொற்றுள்ளது பலிக்க கிறிக்கைக் முகைக்குமுட் தொடக்க அகைக்கப்பட்டு மின் விதி முகைக்குக் தொடக்க விதிதில் அகைக்கப்பட்டும் விறிக்கு மாக்குக்கு தொடக்க விதிதில் பரங்க் வருள்ளது. அக்கிய முதிக்கப்பட்டும் பில் பக்களைத் இநைக்குக்கும் நானம் தோற்கைக்கும் முதித்து.

ஒரு நிராட்டைத் தொட்டத்தில் பரப்பட்டும் கிறிக்கவல்களில் என்றவிக்கு முன்ற பிரும் பிரும் கிறிக்கவல் உணி மையும் இனட்டத்தில் செல்தத்தாற நெடிக்க உணி மேறுமானங்களைக் கொண்டிருக்க சொணிபட்டது. அநியுள் என்றவிக்க விறிக்க கிறிக்க கிறிக

TRIBOLIUM CASTANEUM இன் இனப்பெருக்க உயிரியலில் வேப்பம் விதையிலுள்ள (AZADIRACHTA INDICA) ஆவியாகும் பதார்த்தங்க ளின் விளைவு. (COLEOPTERA: TENEBRIONIDAE)

ஆரிரியர்கள் :

குளியர்கள் : பத்பினி மகேஸ்வான், V. K. கணேசலிங்கம்

(விலங்கியல் துறை, யாழ். பங்கலைக்கழகம்) Vingnanam J. Sci. 3:20 26

அருக்கம் :

தொருக்கப்பட்ட Atalirochu Indica (வெப்பு) விறதவின் ஆவிரைவ் பதரர்த்தும் வகிர் விணவு. புதிறாக வெளியந்தது, புவரித்தும் அறைப் அறைப் கிறவ் விறதவின் விறதவின் குறவ் கிறவ் விறதவின் கிறவ் விறதவின் கிறவ் விறதவின் கிறவ் விறதவின் கிறவ் கிறவ

Vol. 3. Nos. 1 & 2 ஆலிபாகும் பதார்த்தங்களைக் கொண்ட வளிறின் முன்னிலையில், T. castanga இன் இனப்பெறுக்க உறிரியல் சம்பத்தமான பின்வரும் அவதானிப்புகள் தயாரிக்கப்பு டன :7 5% டில் முட்டைகளின் எண்ணிக்கையில் கருதத்தக்களவு குறைப்பு: 2,5 நட களால் முட்டையில் இருந்து குடம்பியின் விருத்திகாலம் தீடிப்பு; குடப்பிகளில் என்னு கையில் 22 8ஆல் கருதத்தக்சனவு குறைப்பு; 100%மான குடம்பி இறப்பு. மேற்கல பட்ட பர்சோதனை அமைப்பில் குடம்பி நிலையில் அறிமுகப்படுத்தப்படின் ஆவியாவும் பதார்த்தங்களால் தடைப்படும் குடம்பிகளின் தொடர்ந்த விருத்தி அதன் வமிழ் தவ்வெடிருந்தன.

ஆயினும் நிறைவுடவிகளின் வாழ்வு காலம் பாடுக்கப்படவில்லை,

இவ T. castaneumஇன் இனப்பேருக்க உயிரியலானது வேப்பம் விதைக்கில் அக யாகம் பகார்க்கற்கள் பாககமான விணைவுகளை உருவாக்குகின்றன என்பகைத் தூற் கின் மது.

NEPHOTETTIX VIRESCENS (Homoptera : Cicadellidae) et முனைய விருத்தியின் அவதானிப்பக்கள் அசெயர்கள் :

G. F. இராஜேந்திரம், நாஜினி ராஜேஸ்வரன் (விலங்கியல் துறை, யாழ் பல்சுலைக்கழகம்)

Vingnanam J. Sci. 3: 27 - 30 (1988)

ரூருக்கம் :

இக்கட்டுரை Nephotettix virescens (distant) என்னம் பச்சை இலைக் கக்கிய் முனைய விருத்தியை விபரிக்கின்றது. 1—6 நான் வயதன்ன முட்டைகளின் முழுப்படுபு கண்டு அசற்றோ - வினால் சாயமேற் ஈப்பட்டன. இரண்டாழ் காவில் முகல் கலைக்கில முதல் உடலுக்கரிய பிரகேசங்கள் கெளிவாகின, வன்றாம் காளில் எனிய தன்பர் கல், கட்புள்ளி என்பனவும், நான்காம் நாவில் கெல்சறைக் கால்களும், உட்காம் நாவில் வாயுறுப்புக்கள், உணர் கொழ்புகள் என்புளவும் கெளிவாகின, கோரிபோன் அரு முனைய உருவை ஆறாம் காவில் போடுபலிக்கவு.

இலங்கைபில் காணப்படும் கபில தத்தி NILAPARAVATA LUGENS இலிருந்து கலத்திடை ஒன்றிய வூழிகளின் பிரித்தெடுப்பு

அசியர்கள் : G. F. இரசுவேத்தேரம். அனக் கணுடுக்கம் (விலங்கியல் துறை, யாழ். பல்கலைக்கழகம்)

Vingnanam J. Sci. 3: 31 - 47 (1988)

கருக்கம் : ஜப்பானில் சுபில தத்தியான Nilaparavata lugens (Stal) (Homoptera : Delphair dar) இச் கே ழுப்புடங்களினும், குகைங்களினும், மதுவம் போன்ற ஒன்றிய வாழிகள் வழித்தோன்றங்கள் அல்லது முட்டை இழையங்களில் காணப்படும் முன்னங்டு.எல இவ்விதழ் கட்டுரைகளின் கருக்கங்கள்

63

த்துமாநிகளாகக் வெளிய, இழைய கவங்கள் அறிகிகப்பட்டன. இம் ஆய்று இங்களைப்படும் N. பி. புரான் (கபியூகதிறிவி) கொருப்படங்கை, முட்கைகள்கி காணப்படும் N. பி. புரான் (கபியூகதிறிவி) கொருப்படங்கள், முட்கைகள்கி அறுவத்தின் எனிற்கிற குறிக்கும் குறிக்கும் படுத்தின் கிறிக்கும் இன்ற கூறிக்கும் குறிக்கும் விறிக்கும் படித்தின் அறு ஆய்பாற மானட்டத்தின்ற கிறிக்கும் குறிக்கும் குறித்தும் குறிக்கும் அறிகும் குறிக்கும் கண்டுக்கும் குறிக்கும் குறிக்கும் குறிக்கும் கண்டுக்கும் கண்டுக்கும் கண்டுக்கும் கண்டிக்கும் கண்டிக்கும் கண்டுக்கும் கண்டிக்கும் கண்டுக்கும் கண்டிக்கும் கண்டுக்கும் கண்டிக்கும் கண்டுக்கும் கண்கள் கண்டுக்கும் கண்டுக்குறைக்கும் கண்டுக்கும் கண்டுக்குக்கும் கண்டுக்கும் கண்டுக்கும் கண்டுக்கும்

CALLOSOBRUCHUS MACULATUS (Fabricus) இன் இனப்பேருக்க உயிரியல் நிடையான மையநீக்கத்தின் விசுனவு.

(Coleoptera : Bruchidae)

தாற்றத் முன்னிருந்து பெறப்பட்ட இலும் சிறியது என அறிவிக்கப்படுகிறது.

சதந்தலாதேனி அம்பிகை பகன், V.K. கணேசுலிம் உம் (வீலங்கியல் துறை, யாழ் பல்கலைக்கழகம்) Vingnanam J. Sci. 3:38 – 41 (1988)

egykania :

Detember 1988

முன்று மணத்தியாகத்திற்கு 185 ppm, 370 ppm கேசுத்தில் சமைநிக்கப் பெற்றும் மூன நிறைபடிய பெறிவற்பட்டிய கொவிறா அறை ஒருக்கான இடவிகளில் முட்டைகளை விறுது வழக்கி விறைகளில் இட்டது. இத்த வைநிக்கி இட்டியுட் கூகின் என்றுக்கை, வாந்ததனுள்ள முட்டைகளில் என்றுகிகாக, முட்டையில் இந்து நிறைபுடலி வரையான விறுதியாட்டும் காவம், நிறைபடுகியில் வாற்றுகாவ் வின்றுகில் கடிக்களைய் காற்றுக் எவ்வைதல் விணைக்கிலினா.

வையத்கிகம் வேகம் 660 ppm, 1000 ppm, 3000 ppm ஆகும்போகுத் இடப்பட்ட டு-கூடகளில் மோத்த எஸ்ணிக்கையும் வதுத்திகளை ஏற்சிலை ஏற்பத்திறமுடன், எழ்த்தவுள்ள முட்டைகளில் எண்ணிக்கையும் அதுதக்கப்பட்டது. வம்பதிக்கும் 4000 ppm இதும் 5000 ppm இதும் செய்யப்பட்டபோது திஞ்சமூரி

மையுக்கம் 4000 rpm இறும் 5000 rpm இறும் செய்யப்பட்டபோத தகமுறை வன்டானது முட்டைகளை குளியமாக கொள்களைகள் கன்னாரி தெருப்பிக் வெறித் காலியது. அதைத் தொடர்ந்த பெள்கண்டு இறந்தது. அது இட்ட முட்டைகளின் வின்றுக்கையிலும் வாழ்ந்கவுள்ள முட்டைகளின் என்னகிக்கையிலும் அடுகளவு கருத் கீக்குமை கிட்டுக் கொள்கும்.

இலங்கையில் நிலவும் வெப்ப அழுத்தம்-ஒரு மனித காலநிலை நோக்கு அ.சிரியர் :

மாளிக்கம் புவனேஸ்வரன்

(புவியியற் துறை, யாழ் பங்கலைக்கழகம்) Vingnanam J. Sci. 3: 42-58 (1988)

64

கருக்கம்; வெப்ப அழுத்த அடிப்படையில் இலங்கையின் மனித வெப்பக் காலநிரவு அரசுப பட்டுள்ளது. கொள்கை ரீதியாகவும், ஓரளவு செயலறிவால் உணரப்பட்ட வேஷிப்பல கள் பாவிக்கப்பட்டுள்ளன. இவை சராசரி ஒரு மனிதன் வெயிலை எடுர்கோல்குற் சம்பத்திறம். ஓப்வு நேரத்திலும் வெறுமையாக நிற்கின்றபோது நிகழுகின்ற நிகையடி சக்டுச் சமதிலை பரிமாற்றத்தை விளக்கப் பயன்படுத்தப்பட்டுள்ளன. மேற்குறிப்பிட்டு அதார அடிப்படையில், களிப்பட்ட ரில்லில் வெப்ப அழுக்கும், காற்றின் வெப்ப கோடி Armed munkaub. Garrer & D. bushiya sa Bet ell des, err bellete Golenb millione billet mountain கள் கான்கு பகுவகால அடிப்படையில் இலங்கையின் 22 வுகியண்டல அவகான சிவயம் கவில் கணக்கிடப்பட்டுள்ளது.

VINGNANAM - JOURNAL OF SCIENCE

Instructions to Contributors

GENERAL

Submission of a manuscript to the editor involves the assurance that it is orginal and that no similar paper, other than an abstract, has been or will be sumitted for publication elsewhere without the consent of the Editorial Board.

Research papers from original investigations and reviews which are critical evaluations of existing knowledge in a specialised field are accepted for distorial consideration. Short communications of sufficient importance to merit publication in advance of a full paper are also accepted by the journal.

The language of publication is English. A translation of the abstract in sushasha should be submitted with the manusacript. Every paper will be referred to at least one referse l'amiliar with the field of research covered by the paper, who will be nominated by the Editorial Board. Papers are edited to increase clarity and ease of communication.

PREPARATION OF MANUSCRIPTS

No restriction is laid on the length of the manuscript, provided it is written the dearly and concisely. All unnecessary descriptions, figures and tables must be eliminated. The impersonal form should be used in the text.

The style of setting out, sub-division of text and lay out of tables in the manuscripts should in general be organised in the form adopted in this issue.

Manuscripts should be submitted in triplicate including the original typewritten copy, typed throughout in double spacing on one side of the paper only. Adequate margins (4 cm) should be left with liberal spacing at the top and bottom of each Page. The typescript should be free of corrections.

Each page of the manuscript should be numbered in the upper right hand corn of the page. The last page should contain (a) a note as to the number of manuscript pages, figures and tables, (b) proposed running title of not more than four words and (c) the name and mailing address of the person to whom the proofs thould be sent.

ILLUSTRATIONS

All illustrations are considered as figures and each graph, densing or placions that the control of the proportions of the printed page. The maximum space available on a page is 140x 190 mm.

Figures must be dawn in Indian lack on plain white paper or board took paper, not large than twice the linear dimensions desired. Drawings shall be paper, not large than twice the linear dimensions desired. Drawings shall be the paper of t

Each figure should carry a legend so written that the general meaning of exiillustration can be understood without reference to the text. The amoust of lettering on drawing should be reduced as far as possible by transféring is the legend. Figure legends should be typed on a separate sheet and plust at the end of the manuscript.

Graphs should be plotted on white or bluelined graph paper or train cloth; grid lines that are to be shown in the engraving should be inked is bid. The caption of each axis should be lettered parallel to its axis. Each figur should be identified in the margin with figure number. The preferred poisin of all illustrations should be indicated in neutil in the manuscriet.

PHOTOGRAPHS

Good glossy prints with sharp contrasts between black and white own shall accompany the manuscripts, The size should be such that when the rin is reduced to the normal size for reproduction (140 × 190 mm maximum) to detail it still clear. Magnification should be indicated with a scale line or far photograph. Figure number should be given on the back of each photograph.

TABLES

Tables should not repeat data which are available elsewhere in the pieze. In table should be typed on a searante shee with due regard for the projections of the printed page. They should be numbered consecutively with Anivariant and the control of the printed page. They should be numbered consecutively with Anivariant and the control of the printed page. They should be clearly set out and the number of observation each table kept as low as possible. Tables should have legand which with their general manning clear without reference to the text and all table counts should have explanatory headings. Units of measure should be indeuted aborizontal rules used only in the heading and at the bottom. Footnotes the tables are to be pinced directly below the table, Beat tables should come the stable are to be pinced if rectly below the table. Beat tables that of the sincification in proud in the measurerier.

REFERENCES

All references to publications made in the text should be presented in a list of references following after the text of the manuscripts. The manuscripts should be carefully checked to ensure that the spelling of authors names and dates are exist.

the same in the text as in the reference list. In the text refer to the author's name the same in the author's name saithout initial) and year of publication, followed, if necessary, by a short re-(without interest to appropriate pages. E.g. "Since Peterson (1967) has shown that " ference to appropriate that the state of the office is made in the text to publications written by more than two authors. reference of the first author should be used, followed by "et al.". This indicathe name of the name of the list of references, where the name of suthers and co authors should be mentioned instead. The list of references should be arranged alphabetically on authors' names, and chronologically per author. If an author's name in the list is also mentioned with co-authors, the following order should be used. Publications of the single author, arranged according to publicsion dates, publications of the same author with one co-author and publications of the author with more than one co-author. Use the following system:

MIRNAL Selman, I, W. & Kulasegaram, S. (1967) Development of the s'em tuber in

Kohlrabi, Journal of Experimental Botany, 18, 471 - 490, Journal name should not be abbreviated. ROOK

Slatyer, R. O. (1967) Plant Water Relationships. Academic Press, London. 366 pp.

SECTIONS OF BOOK

Skoog, F. & Miller, C.O. (1957) Chemical regulation of growth and organ formation in plant tissue cultured in Vitro. pp. 118-131. In Symposia for the Society of Experimental Biology XI. The Biological action of growth substances University Press, Cambridge.

In referring to a personal communication the two words are followed by the year, e.g. (J. McNary, personal communication, 1968).

CROSS-REFERENCES

The cross reference cannot be finally inserted until the page proof is available. Type them: "see page OOO". In the margin pencil the page number of the cross reference in the manuscript.

FORMULAE

Formulae should be typewritten if possible, leaving ample space around the formulae, Subscripts and superscripts should be set off clearly. Greek letters and other non-Latin or handwritten symbols should be explained in the margin when they are first used. Take special care to clearly show the difference between zero (0) and the letter O, and between one (1) and the letter I. Give the meaning of all symbols immediately after the equation in which they are first used. For simple fractions use the, solidus (/) instead of a horizontal line,

e.g.:
$$1_p/2_m$$
 rather than $\frac{1_p}{2}$.

Parentheses and square brackets are preferred in formulae. Accolades should be used only when they are absolutely encessary. Equations should be making scripility in the right-hand side and in parentheses only equations appliety refer to in the text need in general be numbered. The use of fractional power inset of root signs is recommended. Also power of a are often more conveningly noted by exp. In the chemical formulae, valence of ions should be given a

e g. Ca and CO₃ not as Ca +++ or CO₃. Isotope numbers should precede

the symbols, e.g. 10. Use of superscripts added to superscripts and substript added to subscripts should be avoided. if possible.

SHORT COMMUNICATION

The journal may include a limited number of short communication. Authors should submit short communications only when they believe that rajk publication of their result is of the utmost importance. A short communication must not exceed 1200 words, should be complete in its own right and suitable for citation.

PROOFS

Corrected galley proofs must be returned to the editor without doit, Failure to do to will result in delay in publication. Correction of profit by authors must be restricted to the printer's and similar errors. Tray should be marked in pencil. Any modification of the original text is to be avoided, possibility for correcting proofs rests entirely on the authors though edited assistance will be provided, when the provided in the contract of the provided of the contract of the provided of th

REPRINTS

Twenty reprints will be supplied free of charge for each article. Additional reprints can be ordered on the reprint order form which will accompany the pro-

VINGNANAM JOURNAL OF SCIENCE December 1987

Nambare 1-8

pervations on the Biology of three Siganids - Siganus lineatus, Siganus janus and Siganus canaliculatus from Waters around Jaffna. K.CHITRAVADIVELU of Different Soils of Jaffna on the Nodulation of Crotolaria tuncea (Sunn hemp), ARULVATHANI P. ARUDCHANDRAN and K. THEIVENDIRARAJAH Nitrification Studies in a Garden Soil in North Sri Lanka A. M. T. SAVERIMUTTU and S. KANDIAH Studies on the Predatory Effectiveness of Cyrtorhinus lividipennis (Hemiptera: Miridae) on Nilaparvata Jugens (Homoptera: Delphacidae) G. F. RAJENDRAM and FRANCESCA R. DEVARAJAH Observation on the Early Embryonic Development of Nilaparsata lugens (Homoptera: Delphacidae) G. F. RAJENDRAM and ANNETTE SELVADURAL Effect of Coumarin on Tobacco Necrosis Virus Infection in Phaseolus vulgaris c. v. Prince. R.V.S. SUNDARESAN The Effect of Particle Size of Food on the Biology of Two Species of

Abstracts in Tamil

Cryptolestes N. SELVARAJAH

EDTA — Stimulation of Sap ('toddy') flow from Inflorescence during
Tapping in Palmyrah Palm (Berasms Habellifer L.), S. KANDIAH

and S. KOKULATHASAN

waterme 2

VINGNANAM

JOURNAL OF SCIENCE December 1988

Volume 3

Numbers 1 &2

- Laboratory Studies on the effects of Environmental conditions and Fungicides on the Development of Alternaria Alternata (Fr.) Keissler NIRANJANI RAMANATHAN & A SIVAPALAN
- Some Field Observations on the Epidemiology of Downy Mildew Disease of Grape Vine NIRANJANI RAMANATHAN
- Effect of Volatile Substances from Azadirachta Indica (Neem) seeds on the Reproductive Biology of Tribolium Castaneum (Coleptera : Tenebrionida) PATHMINI MAHESWARAN AND V. K. GANESALINGAM
- Isolation of Intra-Cellular Symbiotes from the Brown Planthopper Nilaparavata Lugens (Homoptera : Delphacidae) Occurring in Sti Lanka G. F. RAJENDRAM AND ANNETTE SELVADURAL
- Obervations on the Embryonic Development of Nephotettix Wirescens (Homoptera : Cicadellidae) G. F. RAJENDRAM AND RAJINI RAJESWARAN
- Effect of Horizontal Centrifugation on Reproductive Biology Callosobruckus Maculatus (Fabricus) (Coleoptera : Bruchidae) SAKUNTHALADEVI AMBIKAIPAHAN AND V. K. GANESALINGAM
- Heat Stress in Sri Lanka A Human Climatic Approach MANICKAM PHVANESVARAN

Abstracts in Tamil

Instructions to Contributors