DECEMBER 1986

2011

VOLUME 1

NUMBER 1

ARCHIVES

VINGNANAM JOIRNAL OF SCIENCE

THE SCIENCE FACULTY
INIVERSITY OF JAFFNA
SRI LANKA

VINGNANAM JOURNAL OF SCIENCE

Editorial Board: S. KANDIAH (Editor), M. R. R. HOOLE, R. KUMARA-VADIVEL, S. MAGESWARAN, S. MOHANADAS, G. F. RAJENDRAM (Associate Editors).

VINGNANAM – JOURNAL OF SCIENCE is a semi-annual journal devoted to the publication of original research papers and review articles in all fields of science and technology. Authors are entirely responsible for statements and opinions expressed. Volume one comprises only one number.

The abbreviated title of this journal shall be Vingnanom J-Sci.

SUBSCRIPTIONS:

Annual subscriptions: Foreign \$ 20.00; Local Rs. 40.00 Single copies: Foreign \$ 10.00; Local Rs. 20.00 Subscriptions include postage.

MANUSCRIPTS:

Manuscripts and related correspondence should be sent to DR. S. KANDLHI, EDITOR, VINGANAM — JOURNAL OF SCIENCE, Department of Bostany, University of Jaffaa, Thirunelvely, Jaffaa, Sri Lanka. Authors are urged to read "Intractions to Contributors' printed at the end of this issue before preparing the manuscript.

COPYRIGHT

All rights are strictly reserved. No part of this journal may be copied, translated, photographed, boardcast, televised or otherwise disseminated without the prior written permission of the Dean, Facetly of Science, University of Jaffina, Sri Lanka.

PUBLISHED BY THE

SCIENCE FACULTY OF THE UNIVERSITY OF JAFFNA
THIRUNELVELY, JAFFNA,

SRI LANKA.

Message from the Dice-Chancellor

I am very pleased indeed to send this message on the occasion of the publication of the first issue of Vingnanam, a most praiseworthy effort on the part of the Faculty of Science.

The Faculty of Science in the University of Jaffna, since its inception, has made a notable contribution - through its teaching and research work - to science education in this country. The decision to publish a research journal by this Faculty is yet another landmark in its development.

Vinguanam provides a forum for staff and research students to publish their research findings and thereby fulfils a long-felt need.

I am also happy to note that some of the papers published in this issue

reflect the involvement of the Faculty in areas of research with a regional focuswhich I consider to be a most desirable aspect.

I am confident that Vingnanam, embodying the best traditions of scientific inquiry, will be a welcome addition to scientific literature.

The Editorial Board has done an excellent job in bringing out the first issue in the midst of highly disturbed conditions in the region.

issue in the midst of highly disturbed conditions in the region.

I extend my wholehearted support to Vingnanam and wish it success in

And the property of the control of t

a Dan Margarin (Mari) — (1900) as substitution of the above are general from the special age of the control of

The second of th

to the first the stage of galakting of sewerth ratiofactions e_{ij} for extend the same to confidence rays as filler varyor.

Some the second of the second

and filtrogradies and programming

FORFWORD

It is universally accepted that scientific research and the application of scientific knowledge to the solution of local problems are estential for the development of a country. The Universities are expected to play a key role in these activities and in the dissemination of new knowledge acquired through research. Yet, in Sri Lanks, due to various constraints such as the brain drain ariting from poor salaries and service conditions to constraints such as the brain drain ariting from poor salaries and service conditions to constraint such as the brain drain extension. The salaries of the salaries of

The shortage of qualified staff arising from the brain drain results in an increase in the work load of those teachers who opt to stay behind and serve the country and prevents them from devoting much time to research. It also hinders the formation of effective and viable research groups. Often the research activity in a University is a lone effort by committed individuals. Even in such cases, the results of work done painstakingly over several years sometimes remain unpublished and inaccessible to other workers due to the nonavailability of journals which would be willing to accept the publication of results that may be considered to be of local interest only. It is in this context that the Faculty of Science, University of Jaffna, conceived the idea of publishing a science journal to enable teachers and postgraduate students in the University to publish the findings of their research as quickly as nossible. It is hoped that the publication of the journal will generate more research in the Faculty and increase the scientific tempo in the University. Although the journal is intended primarily as a medium for communicating the results of research done by teachers and students of this University, research articles of local and general interest and review articles of topical interest from other Universities and research institutions, both local and foreign, will also be welcome.

The year 1986 was one of great turmoil in Jaffaa. As a result, only one issue of the journal has been brought out instead of the planned two. Even that has been made possible only due to the dedication and hard work of the Eddicard Staff. I congratulate them on a job well done.

Professor K. Kunaratnam Dean, Faculty of Science

826W116F

To particularly out him descript States.

In the control of the states o

A second content of the content of t

that there is if a little of famous people on the A PI tips of a near term of the feedbal may be provided that you distribute the arms and then that the most often of the or safe of the others when you and continue to the

Professor A, Longitudes

VOLUME 1

NUMBER 1

VINGNANAM

Journal of Science

Research contribution from the Universities in many developing countries has not been comparable to that from the developed countries. This is attributed mainly to heavy teaching load and inadequate facilities for research, besides other factors. These shortcomings have been recognized and attempts are now being made to encourage Universities to promote academic research.

Furthermore, exhoritent feas levied for postgraduate courses in the Universities of the West and the lemind Scholarship or Assistanthips awards available for postgraduate courses in these Universities have made it imperative for Universities in Sri Lanka to initiate graduate courses wherever posteriors. Hence, it is expected that research contributions from our Universities will increase. These should be efficiently communicated locally, not only for promoting practical application of research findings but also for identifying problems that need investigation by the anticonal Universities.

Vingnanam - Journal Of Science is conceived at this time as a journal that would help disseminate worthwhile research contributions from Sci Lanksa Universities and order of the property of the state of the science o

In this first issue, eight out of the nine articles published deal with subjects directly concerned with national problems.

K. Theivendirarajah and R. Kamuthini Chrystopher have presented two major conoming product from pulmyrsh plan say and fruit pulp—a major conoming product many product many product may be supported by the product product have communicated palm of the tropics. S. the product prod

The two papers by G. F. Rajendram with Daphne J. R. Daniel and Francesce. R. Devarajah daserbe the bolong of a rice past and its predator in SrI Lanka. The information should be useful in designing control measures. Canker disease of lime (Citrus) and frujat rod disease of briging (Solonum, two topical problems of farmers in Sri Lanka, are subjects of two papers by Sothisorubini Nalliah et al. and R. V. S. Sundeasens are dat espectively.

Chelliah Elankumaran has provided very important evidence for the increasing salinity trend in the ground water that sustains the population of the Jaffna peninsula. This paper should stimulate further research on this crucial water resource problem of the North.

"The Frame Factor — An approach to Special Relativity" by M. R. R. Hoole is an article that would be of interest to relativists among the physical schatists

Miss C. D. Jeevaraj assisted me in designing the cover and other members of the staff of the Botany Department ungrudgingly helped in the compilation of this issue. I thank all of them on behalf of the Editorial Board.

all the control and brighted and benefit of the problem and the problem of the pr

VINGNANAM JOURNAL OF SCIENCE

Volume 1	December 1986	Number	1
	CONTENTS		
	ah Palm (Borassus flabellifer L.) V NDIRARAJAH and R. KUMUTHII		1
	of Nilaparvata lugens (Homoptera : ENDRAM and DAPHNE J. E. DANI	EL	8
	Cyrtorhinus lividipennis (Hemiptera : RAM and FRANCESCA R. DEVARAJ	АН	14
	(Hasse) Dowson, causing Canker Dis UBINI NALLIAH, R.V.S. SUNDARES		19
Studies on the fruit rot dises R,V.S. SUNDARESAN, and A. SIVAPALAN	ases of Brinjal (Solanum melongena SIVANESWARY KANAGASUNDAR	AM	26
The Potability of Jaffna Groun	d Water. CHELLIAH ELANKUMAR	AN	29
A New Method for Culturing flabellifer L.). S. KAND	g Seedlings of Palmyrah Palm (Bord IAH and S. MAHENDRAN	83115	40
Alcohol from Palmyrah Pale K, THEIVENDIRARAJ	m (Borassus flabellifer L,) Fruit P	ulp.	
CHRYSTOPHER			44
The Frame Factor — An App M.R. R. HOOLE	proach to Special Relativity: A Re	riew	47
Abstracts in Tamil			57

Instructions to Contributors ...

Serve to account

Only in the last rectangue of the set of the

Approved the particle of the p

Property and a second processor to compare the appropriate and the least processor and the compare the compare to the compare the compare

. MAGNE DAVETA, BATE (2012), Taking Johang Tight, or Geograph at the second of the sec

Amounty with dispose the control of Amounty Market Market

P. De con Property of A. Perenty of Property of A. Raches Co. P. De co. C. Perenty of A. Raches Co. P. De co. C. Perenty of A. Raches Co. P. De co. C. Perenty of A. Raches Co. P. De co. C. Perenty of A. Raches Co. P. De co. P.

In You days

CHEMICAL ANALYSIS OF PALMYRAH PALM BORASSUS FLABELLIFER L. WINE ('TODDY')

K. THEIVENDIRARAJAH AND R. KUMUTHINI CHRYSTOPHER (Department of Botany, University of Jeffen, Jeffen, Sri Lanks,

Vingnanam - Journal of Science 1: 1-7 (1986)

ABSTRACT The pairwark pairs, Joseph Joseph Joseph Lee (1962); it has operationarily framework and positionarily framework and feasing hospitaph in prostitionarily framework and positionarily framework and positionarily framework and positionarily and positionarily

Introduction

The palmyrah palm, Borassus flabellifer L. wine ('toddy') is a mild alcoholic beverage of Northern Sri Lanka and other palmyrah growing countries. It is the spalmyrah.

In fact, the main product of the palmyrah pelan is the sap extracted from the inflorescence by a process known as "stapping." The term 'tapping' collectively denotes the artificial extraction and the various processes of stimulating the different sap yielding palms to exuse juice from a selected part, for example, the inflorescences of the palmyrah palm for inserticiation of palmyrah. The tapping of the palmyrah palm for inserticiation of palmyrah. The method of logical the palmyrah palm varies with the set of the palm and the age of the inflorescence of Christianeau and Theivendirarship, 1973. The sap obtained from the inflorescence of the palmyrah palm is consumed either in an undermented state (owest

Vol. 1. No. 1

From the analytical data presented by Mohanadas (1974), it is evident that the planyrah sweet toddy is rich in nutrients and therefore can be used as a the planted nutrient medium for the growth of yeasts and bacteria. Hence it enables the spontaneous and quick fermentation of sap by the yeasts from the air.

Unformented fresh palmyrsh sap contains 10-16-52/20/19/ sugart, mainly in the form of sucrots with varying amounts of placose and fractions depending on the degree of fermentation (Chrystopher, 1985). Due to the action of wild yeast and bacteriot filts but year, which has a neutral PH, is fermented to produce of the control of the produced which usually contains 5-6½ (v/y) ethanol and has a pH of reduced to the control of the complete fermentation (Theirwelfartsgah and Chrystopher, 1983). The indicates that certain acids are produced during the course of fermentation process or after the completion of ethanol production. These acids may be produced as a result of microbial activity. Palmyrsh toddy, when brought cown from the plan, is very weet and refreshing. But it becomes sour and unpleasant after 10-12 hours. This may be due to the formation of acids in the toddy samples. However, Cowap and Geake (1932) suggest that even though more acids are formed during the storage period of toddy samples, the acidity of toddy cannot study be regarded as a criterion of its age.

physiological effects, the appeal to the eye because of the clarity and colours, the pleasent tastes and the aroma and bouquet which are perceived through the sense of smell. In general, the aroma of alcoholic boverages is not due to single 'inpact' layour compound, but to a complex mixture of compounds (Webb and Muller, 1972).

Alcoholic beverages appeal to man for many reasons. Among these are

The sugar, alcohol and vitamin C contents of fully fermented palmyrah toddy were estimated, and the acids found in palmyrah toddy were identified. The aroma compounds of palmyrah toddy were also analysed.

Materials and Methods

The total sugar content of completely fermented palmyrah toddy was determined by the Somogyi's seminicro method and its vitamin C content by the indophenol dye reduction method (AOAC, 1960). The mean alcohol content of these toddy samples was determined using an ebulliometer and the acidity by titration.

The identification of the acids produced during this natural fermentation process was done according to the method described by Randerath (1968), Silics agel plates of 300 pm thickness were prepared, activated and then spotted with palmyrah toddy samples. Authentic samples of lacitic and acids cands were spotted as standards. The chromatogram was developed in a 12 (v/v) mixture of the control of the control

Analysis of aronta compounds

Naturally fermented palmyrah toddy samples and samples obtained by fermenting palmyrah palm sap under different experimental conditions were distilled and distillates analysed on a Varian 2440 gas chromatograph using operational parameters given below:

Packing material: Poropak Q 1.5 m × 3 mm Operating condition: 80°C - 180°C Carrier gas flow: Helium, 30 ml / min.

Results and Discussion

The alcohol, sugar, vitamin C and acid contents of palmyrah toddy after complete fermentation are given in Table 1. It is obvious that most of the sugar in the sap is converted into alcohol due to the action of wild yeasts and bacteria in the sample. The estimation of the ascorbic acid (vitamin C) content of palmyrah toddy in the present paper (39.58 mg/l) agrees with that reported by Sambandham2 but is considerably less than that reported by Paulas and Muthukrishnan3, who have estimated a value of 132.5 mg/l. However, both these studies show that there is an appreciable amount of vitamin C in palmyrah toddy.

Table 1. Alcohol, sugar, vitamin C and acid content of completely fermented (48h) palmyrah toddy

Average content 5.8 Alcohol (ethanol) %v/v less than 1.0 Sugar %w/v 39.58 Vitamin C mg/1.00 Acid (as acetic acid) %w/v 0.5

** Only Vitamin C present in the fo.m of L-ascerbic a.id was estimated

Besides alcohol, acetic acid, vitamin C and residual sugar, palmyrah toddy also contains varying amounts of yeast and bacterial cells, usually in the region of 10° cells/ml. The types of yeasts and bacteria present in naturally fermented palmyrah toddy have already been identified (Theivendiraraiah and Chrystopher, 1984; Chrystopher, 1985).

The acid separated on the chromatogram had an Rf value of 0.58 corresponding with that of acetic acid. This shows that the major acid produced during the natural fermentation of palmyrah sap is acetic acid, due to the presence of which, the fully fermented palmyrah toddy is sour and has a somewhat bitter taste. This acid may be produced as a result of yeast metabolism or by bacterial oxidation of ethyl alcohol produced by the fermentation of sugars by wild vensus.

² Sambandham, K. (1983). Neera - the Nectar. Workshop on Palmyrah - organized by the Food & Agricultural Organization and Palmyrah Development Board, Jaffna, Sr. Lanka.

³ Paules, D & Muthukrishnan, C. R. (1983: The situation of palmyrah in India. Workshop on Palmyrah - organized by the | ood & Agricultural Organization and Palmyrah Development Board. Jeffoe, Sri Lanka,

Analysis of toddy distillates by gas-liquid chromatography reveals that the major product of palmyah sap fermentation is ethanol with varying amounts of methanol, n-propanol, isobutanol, chtyl acetate and n-mayl alcohol (Fig. I). The etter ethyl acetate was present in all the samples analysed, suggesting that its compound may be the cause of the characterisic aroms of palmyah toddy distillates, which are commonly referred to as 'palmyah arrack'. Table 2 gives the major components of the distillates obtained, under different conditions.

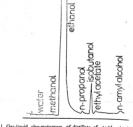


Fig. 1 Gas-liquid chromatogram of distillate of toddy obtained from young female inflorescences of palmyrah palm (sample Number 3).

				,		bie mannet	3).
Table	2.	Analysis	of	palmyrah	todđy	distillates	

opound /	Dumpto n	0. 1	2	3	4	2	0	7	
Methanol		tr	+	+	+	tr	+	+	
Ethanol		+	+	+	+	+		1	
n-propanol		tr	tr	+	tr	+	tr	T.	
Isobutanol		tr	+	+	+	i		. T	
Ethyl scetate		+	+	÷	+	1	T	+	
n-amyl alcohol		+	+	+	+	+	+	T	

tr = traces

- Distillates of toddy obtained from young male inflorescences of palmyrah palm
- Distillates of toddy obtained from matured male inflorescences of palmyrah palm
- Distillates of toddy obtained from young female inflorescences of palmyrah palm
- of palmyrah palm

 Distillates obtained from non-heat sterilized palmyrah sweet
- toddy medium fermented with Saccharomyces cerevisiae

 Distillates obtained from non-heat sterilized palmyrah sweet
 toddy medium enriched with salts and fermented with Sacch-
 - Distillates obtained from heat sterilized palmyrah sweet toddy medium fermented with Saccharomyces cerevisiae

aromyces cerevisiae

- 7 Similar to sample 6, but fermented with Saccharomyces chevalleri
- The mixture of compounds found in arrack other than ethanol is collectively dended as fusel oil. The differences in fusel oil content of the toddy distillate obtained from young and mature male inflorescences may be due to the different microflora found in these samples. Rankine (1967) reported that the amounts of the higher alcohols formed were not related to the amount of sugar consumed during the fermentation process; beace the differences in the sugar content of these same will not the cause of the variation in fuel oil content.

It was found that serilization of the palmyrah sweet toddy medium prior for fermentation by the yeast Kachonmupos cerestifies (previously) isolated from palmyrah toddy) reduces the futel oil content of the sample. This may be due to the absence of wild yeast and bacterial strains in heat-sterifized palmyrah sweet toddy medium. However, addition of salts such as NHLCI, MgSO, and KHJ-PO, to the non-heat sterificine medium prior to fermentation by the same yeast strain seems not only to reduce the amount of fusel oil in the distillate but also to increase the amount of ethanol in the sample. Most probably these salts may induce the growth of the inoculated yeast strain which may overgrow the wild yeast strains, the wild yeast strains set of all. (1972) also reported that the addition of ammonium phosphate prior to fermentation, reduces the production of higher alcohol or higher alcohol.

From the results presented, it is apparent that the compositional variation between distillates may be due to differences in the toddy samples or the maturation period employed. It is found that there are no differences in the

6

fermentation patterns of the yeasts belonging to the same genus i.e. Socidenompress cerevision and Sozdonimyres derevoller (both previously biosated from palmyrsh toddy). However, as Rankine (1967) and Jegansthan (1981) suggest the characters of arrack could be altered by selecting the yeast combination for fermentation and variation may be found in the fermentation patterns of yeasts belonging to different genera.

The nitrogen content of yeasts also affects fermentation and formation of fusel oil (tha, 1972). The production of fusel oil increases when the yeast has feeble fermenting power and is poor in cell nitrogen. Therefore, the addition of a high inoculum of yeast, rich in nitrogen, will reduce the formation of fusel oil.

Rajendrasiegh and Kunker (1976) suggest that there is a close relationship between the control of activities of alcohol dehydrogenase and formation of fuel oil alcoholi. As different yeast strains many have different alcohol dehydrogenase activities, the amount of fuel oil produced by yeasts belonging to different genera will vary.

In addition to the strain of yeast and composition of the palm sap, the production of higher alcohols is influenced by conditions of fermentation and sittillation. Volatile acids, esters, addehyde and fusel oil alcohols distillation. Volatile acids, esters, addehyde and fusel oil alcohols distill over with the vialings' whereas esters and addehydes distill over with the viality whereas esters and addehydes distill over with the viality of viality of the viality of via

The presence of ethyl acetate in all the samples analysed supports the earlier conclusion that a cetic acid is the major acid produced during fermentation of palmyrah sap. The origin of the ester ethyl acetate is almost certainly microbiological.

Although most of these byproducts of alcoholic fermentation are very poisonous if separated out by themselves and given in sufficiently large amounts, in the proportions in which they are usually found in arrack (traces), their action is quite harmless.

Acknowledgement

The authors thank the Director, CISIR, Colombo for arranging for the use of Varian 2440 gas chromatograph.

References

- Amerine, M. A., Berg, H. W. & Cruess, W. V. (1972) The Technology of Wine Making. The AVI publishing Company U.S.A. 244 pp.
- AOAC, (1960) Official Methods of Analysis. 9th edn. Association of Official Agricultural Chemists, Washington D. C. 421 pp.
- Chrystopher, R. K. (1985) Studies on the fermentation of Borassus flabellifer palmyrah palm sap. M. Pil, Thesis, University of Jaffna.
- Cowap. J. C. & Geake, F. H. (1932) The analytical characteristics of coconut toddy. The Analyst 57: 627-628.
- Jeganathan, M. (1981) Report of the Chemistry Division 1980. Ceylon Coconut Quarterly 32: 35-37.
- Quarterly 32: 35-37.

 Jha, B. K. (1972) The secondary constituents of alcohol. The Association of Food Scientists & Technologists and Central Food & Technological Research
- Mohanadas, S. (1974) Comparative analysis of coconut and palmyrah toddy. Proceedings of the Institute of Chemistry 3: 25-28.

Institute Symposium, Mysore, India.

- Rajendrasingh & Kunkee, R. E. (1976) Alcohol dehydrogenase activities of wine yeasts in relation to higher alcohol formation. Applied & Environmental Microbiology 32 (5): 666-670.
- Randerath, K. (1968) Thin Layer Chromatography. Verlag Chemic GmbH, Weinheim.
- Rankine, B.C. (1967) Formation of higher alcohols by wine yeasts and relationship to taste thresholds. Journal of Science of Food & Agric Ature 18:583-589.
- Theivendirarajah, K. & Chrystopher, R. K. (1983) Studies on Palmyrah (Borassus flabellifer) palm sap. Proceedings of the Sri Lanka Association for the Advancement of Science 39 (1): 64 (Abstract).
- Theivendirarajah, K. & Chrystopher, R. K. (1984) Studies on the microbial fermentation of palmyrah (Borassus Jabelifer) palm sap. Proceedings of the Sri Lanka Association for the Advancement of Science 40(1):53 (Abstract).
- Thirukanesan, A. & Theivendirarajah, K. (1978) Methods used in tapping palmyrah palm (Borassus flabellifer Linn.). Phyta 1 (3): 25-29.
- Webb, A.D. & Muller, C.J. (1972) Volatile aroma components of wines and other fermented beverages. Advances in Applied Microbiology 15:75-146.

OBSERVATIONS ON THE BIOLOGY OF NILAPARAVATA LUGENS (HOMOPTERA: DELPHACIDAE)

G. F. RAJENDRAM¹ AND DAPHNE J. E. DANIEL²

(Department of Zoology, University of Peradenlya, Peradenlya, Sri Lanka)

Vingnanam - Journal of Science 1: 8-13 (1986)

ABSTRACT Studies were serviced out on the biology of Midgerman layeus (Sala), cultured on rise variety Th. I. Eggs were 0.48 mm long and 0.16 mm wider, mearopageous adult male 2.9 mm long and 1.1 mm wider, formals 3.3 mm long and 1.1 mm wider, brachypeterous adult male 2.9 mm long and 1.1 mm wider [femals 3.3 mm long and 1.0 mm wider, femals 3.3 mm long and 1.1 mm wider. Mean incubation period of eggs was 9.4 days; lengenfy of mancosterous adult male was 13.2 days, femals 16.4 days; brachypterous adult male 11.2 days and femals 11.6 days. These values are compared with results obstacted for matoties in Japan and Philippines.

Introduction

The brown planthopper Nilaparnata lagent (Stål) is one of the most destructive pests of the rice crop in Southeast Asia. It damages the plant directly through feeding on it and also by transmitting the virus disease, "grassy stum" (Ling, 1972) and "ragged stunt" (IRRI, 1978). Heavy infestation causes drying up of the plant—a condition known as "hooseeburn" (Dock & Thomas, 1979).

in Sri Lanka, N. Ingent was first recorded as a pest in Kalutar district in 1912 (Fernand or 4st, 1979). Since then sponedic outbranks have occurred in reveral areas, mainly in continenters. Sri Lanka. In the last three decades the prown planthopper has been appealing in large numbers in several districts, especially. Amparai and Batticaloa, occasionally causing hopperburn (Fernando, 1975; Raindram 1982).

Studies on the biology of this pest have been carried out in Japan by Harukawa (1951), Kuwahara (1956), Suenaga (1963) and Mochida (1964) and in the Philippines by Bac & Pathak (1976).

The present paper describes the results of laboratory studies on the biology of N. lugens, including morphometrics, longevity and fecundity.

¹ Present address: Department of Zoology, University of Jaffna, Joffna, Sri Lauke.

² Present address: Fisheries Research Station, Colombo 15, Sri Lanka,

Materials and Methods

Cultures of N. Jagans were obtained from rice fields in Amparal district and mast cultured in the laboratory at the University of Pergledujus on rice variety TN 1, grown in 25×15×9 cm swooden boxes, kept in 30×25×25 cm fine much caps with plastic doors. The temperature in the laboratory registered a range of 25×29×25 cm and realize humbling 30×10×92. Paris of adult N. Jagans were reared in 15×15 cm test tubes into which a 12 day old rice seedings was very example of the property of the common state of the seeding was purposed with cotton. Unless otherwise indicated, a total of 90 observations, proprinting 5 generations, comprising 10 observations per each generation, top

Eggs were obtained by maintaing pairs of N. lugens adults in test tubes for 24 hours. The rice stems were then removed and dissected under a stereo-microscope in order to locate the eggs, which were then measured with the help of an ocular micrometer.

To study the incubation period, the egg bearing sections of the rice stems were nipped off and transferred into 7.5×2.5 cm glass wish and placed on 7×2.5 cm strips of filter paper, moistened with tap water. A few leaf blades of the circ plant, 6 - 7 cm long were also introduced into the viait to sterve as food for symphs on emergence. Observations were made daily for 15 days after ovigosition of determine the number of symphs harching out daily, and the average incubation period calculated. At the end of 15 days, the stems were dissected out to determine the matched.

Studies on symph size and duration were made by transferring newly emerged symphs from the previous experiment, by means of an aspirator, to individual test tubes. The symphs were transferred to test tubes with fresh plants every 4 days during the early stages and every 3 days after the fifth instar stage. The duration of each instar was noted and the body length measured on the day of moulting.

Measurement of body length of adults was made on the day of emergence from the fifth instar. The body length up to the tip of the abdomen was measured.

Longevity studies were carried out on newly emerged adults reared in pairs in test tubes. The adults were transferred to test tubes. with fresh seedlings every 2 days.

Fecundity studies were also made on pairs of newly emerged adults reared in test tubes. These were transferred to a test tube with a fresh plant every 2 days, Observations were made daily for a period of 10 days. The oviposited stem was

10

transferred to a 7×2.5 cm vial and placed on moist filter paper. The number of nymphs emerging from each vial was counted. Fifteen days after oviposition the stem was dissected and the number of unhatched eggs counted.

When two values were compared, t-test was employed to determine significance; when more than two values were compared, analysis of variance was employed. Significant contrasts were determined by means of studentized range q tests.

Results and Discussion

The dimensions of eggs, nymphs and adults are presented in Table 1, Females of both macropterous and brachypterous forms had significantly longer body lensts than the respective males.

Table 1 Dimensions of N. lugens Egg, Nymph and Adult cultured on

Developmental Stage		Number of individuals	Length (mm) ($Mean \pm SD$)	Width (mm) (Mean±SD)
Egg		50	0.84±0.06	0.16±0.02
Nymph:	1st instar	50	0.70±0-07	0.24 ± 0.03
	2nd instar	50	1.00 ± 0.07	0.42 ± 0.03
	3rd instar	50	1.40 ± 0.14	0.60±0.05
	4th instar	50	1.90 ± 0.12	0.85 ± 0.06
	5th instar	50	2.40±0.10	0.92 ± 0.05
Adult:	Macropterou	5		
	Male	50	2.90±0,15	1.1±0.07
	Female	50	3.30 ± 0.14	1.2±0,05
	Brachypterou	8		
	Male	50	2,90±0.15	1.0±0.03
	Female	50	3.70±0,27	1.1 ± 0.04

The incubation period of eggs and developmental period of nymphal instart are given in Table 2. The mean incubation period of 56 days in ingeneal agreement with the values of 7.3 to 10.5 days, under temperature range of 23.7° to 25.6°C, reported from Japan (Harnkawa, 1951). It is longer than the average 7.3 days, under a temperature range of 19° to 33°C, recorded in the Philippines (Base & Patals, 1974).

Table 2 Developmental Period of N. lugens Egg and Nymph cultured on rice variety TN 1

Developm Stage	ental		Number of individuals	Range (days)	Duration (days) (Mean±SD)
Egg			920	9 - 10	9.6±2,30
Nymph:	Ist i	nster	50	3 - 4	3.4±0.49
rey capit.	2nd i		50	2 - 4	2.8±0.69
	3rd i		50	2 - 4	2.8±0.64
	4th i		50	2-4	2,5±0,57
	5th i		50	2 - 5	4.0±0.54

Longevity of adults (Table 3) sid not differ significantly between males and females in both macropierous and brachypterous populations. Longevity of 13.2 days for macropierous males and 16.4 days for macropierous females are in ageneral agreement with 12.8 days and 17.8 days respectively reported for N. Agent cultured on 18.9 - 60 in the Philippines (Sake & Patalsk, 1970).

Table 3 Longevity of N. lugens Adult cultured on rice variety TN 1

N. lugens Adult	Number of individuals	Range (days)	Duration (days) (Mean±SD)	F-valu
Macropterous				
Male	20	5 - 32	13 2±4.9	
Female	20	6 - 30	16.4±5·9	
Brachypterous				
Male	20	7 - 15	11.2±3.2	
Female	20	2 - 22	11,6±4.0	1.8*

Not significant at 5% level.

Mean fecundities (Table 4) of 76.8 eggs for macropterous females and 33.0 eggs for bachyptous females are considerably lower than 1845. eggs in the attent of the first females and 53.1 eggs in the natural conditions recorded in lapan by Kimin (1965, 80): 10.9 eggs percorded also in Japan by Kum (1968), 800: 10.9 eggs percorded also in Japan by Kum (1968) and 2442 eggs per female, cultured on IR 9 - 60, in the Philippines (8te & Pathak, 1970). Treasons may account for the extremely low values obtained in these experiments first the values represent eggs hid only during the first 10 days after emergence and secondly these represent eggs actually laid — realized fecundity only.

Table 4 Mean fecundity of N. lugens female cultured on rice variety TN 1 during first 10 days after emergence

N. lugens Adult	Number of individuals	Total number of eggs	Mean fecundity (Mean±SD)	t-value
Macropterous	12	921	76.8±8.1	-
Brachypterous	12	376	33.0±3.3	3.0*

N. lugens from Sri Lanka, cultured on IR 9 - 60, was reported to have longevities of 15.8 days for macropterous males and 16.7 days for macropterous females and mean fecundities of 75.9 eggs for macropterous females and 45.8 eggs brachypterous females (Daniel, 1982). These values are similar to those obtained in these experiments on N. lugens cultured on TN I. These similar values obtained from TN 1, a rice variety with no resistant gene, and IR 9 - 60, a variety moderately resistant to biotypes of N. hugens from Philippines, would seem to confirm that geographically separated populations of N, lugens are more likely to have taxonomic differences of biological significance (Claridge & Den Hollander, 1980; Daniel & Rajendram, 1983).

Acknowledgement

Grateful thanks are due to the following: Professor H. Crusz, Department of Zoology, University of Peradeniya, for facilities; Dr. M. D. Pathak and Dr. E. A. Heinrichs, Entomologists, International Rice Research Institute, the Philippines, for paddy seeds; Professor D. J. Sullivan, Department of Biological Sciences, Fordham University, New York for criticism. This work was supported in part by grant no. RG/77/15 from the National Science Council of Sri Lanka.

References

- Bae, S. H. & Pathak, M. D. (1970) Life history of Nilaparvata lugens (Homoptera: Delphacidae) and susceptibility of rice varieties to its attacks. Annals of Entomological Society of America 63, 149 - 155.
- Claridge, M. F. & Den Hollander, J. (1980) The "biotypes" of the rice brown planthopper Nilaparvata lugens. Entomologia Experimentalis et Applicata 27,
- Daniel, D. J. E. (1982) Laboratory studies on the biology of Nilaparvata lugens (Stål) and chemotaxonomy of biotypes from Sri Lunka and Philippines. M. Scthesis, University of Peradeniya, Sri Lanka,
- Daniel, D. J. E. & Rajendram, G. F. (1983) Chromatographic analysis of free amino acids in eggs of Nilaparvata logens in Sri Lanka and "biotypes" 1, 2 and 3 of the Philippines. Entomologia Experimentalis et Applicata 33, 226 - 228.

46 - 65

- Dyck. V. A. & Thomas, B. (1979) The brown planthopper problem, pp. 3 17, In Brown planthopper: Threat to rice production in Asia. International Rice Research Institute, Los Banos, Pallippines.
- Fernando, H. E. (1975) The brown planthopper problem in Sri Lanka. The Rice Entomology Newsletter 2, 34 - 36.
- Fernando, H., Sonadhera, D., Elikawela, Y., do Alwis, H. M. & Kudagamage, C. (1979) Varietal resistance to the brown planthopper in Sri Lanka, pp. 241 - 249. In Brown planthopper: Threat to rice production in Asia. International Rice Research Institute, Los Banos, Philippines.
- Harukawa, C. (1951) Effect of environmental temperature upon rice leafhoppers. Botyu-Kagaku 16, 1 - 11.
- International Rice Research Institute (1978) Annual Report for 1977. Los Banos, Philippines.
- Kisimoto, R. (1965) Studies on the polymorphism and its role playing in the population growth of the brown planthopper, Nilaparvata lugens Stål, Bulletin Shikohu Agriculture Experiment Station 13, 1 - 106.
- Kuno, E. (1968) Studies on the population dynamics of rice leafhoppers in a paddy field. Bulletin of Agriculture Experiment Station 14, 131 - 246.
- Kuwahara, S. (1956) Studies on weather factors related to the abnormal flight of the leafhoppers and planthoppers. Byogaliya Hatsusay Yosalsu Shiryo 56,
- Ling, K. C. (1972) Rice Virus Diseases. International Rice Research Institute, Los Banos, Philippines. 134 pp.
- Mochida, O. (1964) On oviposition in the brown planthoppers, Nilaparvata lugens (Stål). Homop., Auchenorrhyncha I. Oviposition and environmental factors with special reference to temperature and rice plant. Bulletin of Kyushu Agri-
- culture Experiment Station. 10, 257 285.

 Rajendram, G. F. (1982) The brown planthopper problem. Presidential Address, Section D. Proceedings of Sri Lanka Association for Advancement of Science 38 (2), 49 54.
- Suenaga, H. (1963) Analytical studies on the ecology of two species of plant-hoppers, the white-back planthopper, Sogate furzifera Horvath and the brown planthopper, Niluparquia ingens (Stil) with special reference to their outbreaks. Bulletin of K synth Agriculture Experiment Station 8, 1 152.

OBSERVATIONS ON THE BIOLOGY OF

CYRTORHINUS LIVIDIPENNIS (HEMIPTERA: MIRIDAE)

G. F. RAJENDRAM AND FRANCESCA R. DEVARAJAH¹ (Department of Zoology, University of Jaffina, Jaffina, Sri Lanka)

Vingnanam - Journal of Science 1: 14-18 (1986)

AISTRACT The biology of the predictors mind. Outstainer Indifferent Research was studied. Eggs averaged 0.7 mm in long and 0.20 mm wides; the adult mide 2.88 mm long and 0.92 mm wide and the female 2.84 mm long and 0.92 mm wide and the female 2.84 mm long and 0.92 mm wide and the female 2.84 mm long and 0.92 mm wide and the female 2.84 mm long and 0.92 mm wide and the female 2.84 mm long and 0.92 mm wide. Men inclusively of adult main 1.8.4 days and service of the one of the days and foregoing of adult main 1.8.4 days and service wide female 0.84 mm long and 1.84 mm long per female. Long ceits and foregoing of the 5st Lanka population are incremediate between Politippines and Trailind on the one has dard Hassial and India on the other.

Introduction

Cytrebium lividjomnir Reuter is a predator of the planthopyer and logic hopper pest complex of freis in Southeast Asia and the Pacific Cehin, 1979, Yamatsu et al., 1981; Liquido a Nishida, 1983). Its significance as a potential biological control agent of rice pests is due to its widespread distribution in rice growing countries. It has been recorded from India, Sri Lanka, Burma, Indoresia, Thailand Alabysia, Philippices, Japan, China, Taiwan, New Guirene, Fiji, Mraiwas Islands, Caroline Islands, New Hebrides, Guam, Great Nicobar and has been reported from both, 1966, Suenaga, 1953). In Sri Lanka, C. Hiddjennis has been reported from both, 1966, Suenaga, 1953, In Sri Lanka, C. Hiddjennis 1982; 1984, Batticalos, Kilinocheli and India (Greater al., 1976; Rajendram, 1982; 1984). Batticalos, Kilinocheli and India (Greater al., 1976; 1984) and Kindoy and Kurungsla (Rajendram unsuphiblied designedram 1982; 1984) and

Studies on the biology of C. Bridipennis have been carried out in the Philippines (Reys & Gabriel, 1975), Thialian (Transapsankool, 1975), India (Samal & Miras, 1977; Pophaly et al., 1978) and Hawaiti (Lajudio & Nishida, 1985). The present paper describes the results of laboratory studies on the biology of C. Bridipennis from Sri Lanka, including morphometrics, longerity and fecundity.

Materials and Methods

Mass cultures of C. Iividipenuis were maintained in the laboratory by releasing gravid females, collected from rice fields in Kilinochchi, into a plastic sleeve cage (30×25×25 cm) with potted plants of rice variety Bg 90-2, 4-5 weeks old,

¹ Present address : Department of Zeelagy, Eastern Uminersity, Vansharancolai, Chengaladi P. O., Sri Lanka.

along with different stages of Nilaparrata lugens (Stal) which served as the host. Rice plants, on which N. lugens fed, were changed regularly. The temperature in the laboratory registered a range of 26 - 32°C and relative humidits 40 - 22°C.

Studies on incubation, fecundity and longevity were carried out on C. Il_{hi}dilennis, transferred, by means of an aspirator, into a chimney cage. The chimney cage was made up of a potted plant, of rice variety 8g 90 - 2, 4 - 5 weeks old, with a chimney, 20 cm high, fitted over the rice plant. Various stages of N. Inerest were introduced into the chimney cage, as required.

To determine the incubation period of eggs, a gravid female C. Jiridjennie was transferred into a chimney cage. After 24h, the inacts was removed and the plant observed daily for 15 days for emerging sympls. The number of nymphs was noted and the incubation period determined. After 15 days, the plant efficienced, under a dissection, microscope, and the number of unhatched eggs

In studies on fecundity. a male-female pair of newly emerged C. lividipennis and unwast ransferred into a chimney eage and observations made daily and the number of emerging symphs counted. After 15 days, the plant was discered and the number of unhatched eggs noted. At the death of the female, the abdomen was discered and the number of unhatched eggs noted. At the death of the female, the abdomen was discered and the number of unhatched eggs noted.

In studies on symph size and duration newly emerged symphs were transferred singly, by means of an aspirator, into individual text tubes (15x.15 cm) containing a Bg 90-2 rios seedling kept in place by moist cotton. A gravid N. Agears female was also introduced to provide eggs a food for the nymph. The symphs were transferred to text tubes with fresh plants every three days, observed duly for sign of monthing, the exvisive removed and the duration of instar novel

Adults were sexed upon emergence and their body length and width measured. Longevity of adults was determined by pairing newly emerged adults in the chimeny case. They were then observed daily to obtain data on longevity.

When two values were compared, t-test was employed to determine significance.

Results and Discussion

The dimensions of eggs, nyupka and adults are presented in Tuble 1. The body length of adult females, 258 mm ass slightly larger than that of moles, 258 mm. The adult dimensions are in general agreement with values reported from other countries. The body lengths of make and female adults and first and fourth intar rouphs were respectively 2.28, 5.04, 6.71 and 2.02 mm in Phillipsin, 2.34, 2.45, 6.64, 6.71 and 2.02 mm in Phillipsin, 2.34, 2.45, 6.64, 6.71 and 2.02 mm in Phillipsin, 2.34, 2.45, 6.64, 6.71 and 2.02 mm in Phillipsin, 2.34, 2.45, 6.71 and 2.24 mm in Phillipsin, 2.34, 2.45, 6.71 and 2.34 mm in Phillipsin, 2.34, 2.45, 2

Developn Stage	ental	No. of individuals	Lenth (mm) (Mean±SD)	Width (mm) (Mean±SD)
Egg		30	0.77±0.04	0,20±0.03
Nymph:	1st instar	30	0.87±0.02	0.23 ± 0.05
	2nd instar 3rd instar	30 30	1.49±0.20 1.76±0.21	0.46±0.04 0.64±0.10
	4th instar	30	2.49±0.30	1.07±0.22
Adult:	Male	30	2.88±0.16	0.92 ± 0.12
	Female	30	2.94±0.37	1.04±0.22

The incubation period of eggs, developmental period of nymphal instars and longevity of adults are given in Table 2. The mean incubation period of 7.36 days of C. lividipennis in Sri Lanka is in general agreement with values of 7,56 days reported from the Philippines (Reyes & Gabriel, 1975) and 7.3 days from India (Samal & Misra, 1977). The total duration of nymphal instars also does not show much variation, being 11.72 days in Philippines. 12.1 days in India and and 12 66 days in Hawaii (Reyes & Gabriel, 1975; Samal & Misra, 1977; Liquido & Nishida, 1985).

Table 2. Developmental period of C. lividipennis egg and nymph and loneavity of adult

Developmental Stage		No. of individuals	Range (Days)	Duration (days) (Mean±SD)
Egg		30	6 - 8	7.36±1,71
	1st instar 2nd instar	30 30	2 - 3	2.47±0.51 2.78±0.78
	3rd instar 4th instar	30	2 - 4 3 - 4	3.00±0.65 3.47±0.57
Adult :	Male Female	30 30	3 - 37 2 - 25	16.47±2,60 12.33±2.69

The longevity of males, 16.47 days, is significantly higher than that of females, 12.33 days, (Table 2: t=2.19; P < 0.05%). Longevity values of Sri Lanka population of C. lividipennis are also in general agreement with the values reported from Philippines, 16.7 days for males and 14.8 days for females (Reyes & Gabriel, 1975), but considerably smaller than 19,2 and 21.7 days for male and female adults

reported from Hawaii (Liquido & Nishida, 1985). In India, Samal & Misra (1977) reported a combined longevity of 7.4 days for male and female adults while Pophaly et al. (1978) reported a combined longevity of 40 days.

Mean realized fecundiny of 30.08 eggs per female in the present study is higher than 13.5 eggs reported from the Philippines (Reyes & Gabriel, 1975) but lower than 98.71 eggs reported from Hawaii (Liquido & Nishida, 1985).

Ecologically, change in body size has been related to competition for and allocation of available resources (Prica, 1975). Liquido & Nishida (1985) reporting on variation in number of symphsh instans of C. Intilipeousli from different countries concluded that the inconstancy in the number of mouths had not influenced the integrity of the quantitative genetic expression of body size. The present results confirm these conclusions. We can also confirm that there is no apparent admitter generating C. Intilipeously as later its body size.

Although Liquido & Nishida (1985) maintained that high fecundity and longevity in the Indian population of C. Inteligentia as reported by Pophaly et al. (1978) combined r and k stretegist characteristics of long adult life and high fecundity, they concluded that there was no apparent relationship between longevity and fecundity. These findings are also confirmed by the present study.

Acknowledgement

Grateful thanks are due to the following of the Department of Zoology, University of Jaffna: Professor V. K. Ganesalingam, Head, for facilities; Mra.M. Sapanathan fer typing the manuscript. This work was supported in part by grant no. RGB/80/35 from the National Science Council of Sri Lanka.

References

- Chiu, S. C. (1979) Biological control of the brown planthopper, pp. 335-355. In Brown planthopper: threat to rice production in Asia. International Rice Research Institute, Los Banos, Philippines.
- Liquido, N. J. & Nishida, T. (1985) Variation in number of instars, longevity, and fecundity of Cystochimus Ilridipennis Reuter (Hemiptera: Miridae). Annals of Entomological Society of America 78, 459 - 463.
- Otake, A., Somasundaram, P.H. & Abeykoon, M.D. (1976) Studies on populations of Sogatella furcifera Horvath and Niloparvata luggeng Stål (Hermiptera: Delphacidae) and their parasites in Sri Lanka. Applied Entomological Zoology 11, 284. 291.
- Pophaly, D. J., Rao, T. B. & Kalode, M. B. (1978) Biology and predation of the mirid bug, Cyrtorkhus lividipensis Reuter on plant and leafhoppers in rice. Indian Journal of Plant Protection 6, 7-14.

- 19
- Price, P.W. (1975) Insect ecology. John Wiley and Sons. New York 514nn. Raiendram. G. F. (1982) The brown planthopper problem. Presidential Address, Section D. Proceedings of Sri Lanka Association for Advancement of Science 38 (2), 49 - 54.
 - Rajendram, G. F. (1984) Biological control of paddy pests in Sri Lanka. Vidurava-Bulletin of Natural Resources. Energy and Science Authority of Sri Lanka 8 (1), 16 - 19,
 - Reves, T. M. & Gabriel, B. P. (1975) The life history and consumption habits of Cyrtorhinus lividipennis Reuter (Hemiptera; Miridae). Philippine Entomologist 3 79 - 99-
 - Samal, P. & Misra, B. C. (1977) Notes on the life history of Cyrtorhinus lividipennis Renter, a predatory mirid bug of rice brown planthopper Nilaparvata Jugene
 - (Stal) in Oriesa. Oryga 14 (1) 47 50. Suenaga H. (1963) Analytical studies on the ecology of two species of planthoppers the white backed planthopper (Sogatella furcifera Horvath) and the brown planthopper (Nilaparvata lugens Stål), with special reference to their
 - outbreak. Bulietin of Kyushu Agricultural Experiment Station 8, 1-152. (In Japanese, with English summary). Swezey, O.H. (1946) Notes on some Fulgoroidea of Guam. In Insects of Guam.
 - Rernice Payahi Rishon Museum Bulletin 189 105 148. Tanangsnakool, C. (1975) Ecological investigation on the brown planthopper. Nilaparvata lugens (Stal) (Homoptera: Delphacidae) and its egg predator. Cyrtor-
 - hinus lividipennis Reuter (Hemiptera: Miridae), M.S. thesis. Kasetsart University. Thailand.
 - Usinger, R.L. (1946) Hemiptera (Heteroptera) of Guam. In Insects of Guam, Bernice Pauahi Bishop Museum Bulletin 189, 11 - 104.
 - Yasumatsu, K., Wongsiri, T., Tirawat, C., Wongsiri, N. and Lewvanich, A. (1981) Contributions to the development of integrated rice nest control in Thailand, Japan International Cooperation Agency, Japan.

Received for publication 3 November 1086

STUDIES ON XANTHOMONAS CITRI (HASSE) DOWSON, CAUSING CANKER DISEASE OF CITRUS

SOTHISORUGINI NALLIAH, R. S. V. SUNDARESAN AND A. SIVAPALAN'
(Department of Bolany, University of Jeffne, Jeffne, Sri Lanke)

Vingnanam -- Journal of Science 1: 19--25 (1986)

ABSTRACT The present investigation was undertaken with a view to obtaining some basic information about some of the factors that are conducive to the infection of citrus plants by Youthowens citri (Hasse). Dowson. Temperature of about 30°C and 100% relative humidity seem too provide ideal conditions for the infection to occur. The disease can be severe during both dry and wet conditions. The bacteria gain entry pre dominantly through wounds and occasionally natural openings. Injection usually takes about seven days to develop from the time of inoculation. under laboratory conditions, and about eightern days after in-culation in field. Chloramphenicol and tetracycline suppress the growth of the bacteria in vitro under laboratory conditions at a concentration of 100 enm and Antracol-Streptomycin and Copper Sandoz are effective at a concentration of 1000 ppm. In vivo studies indicate that tetracycline inhibits symptom development at 100 nom in detached leaves, while chloramphenical and stremptomycin together with Copper Sandoz and Cupravit are effective in suppressing symptom development at 1000 pem-

Is traduction

The canker disease of citrus, Citrus aurantifolia (Christim) Swingle, was easiler thought to be caused by the bacterium, Penadomonar citri which was subsequently renamed Xonthomonar citri (Hasse) Dowson and reported by Agrics (1978). This is one of the commonaest disease of citrus plant and is world wide in its occurence. The pathogen affects mainly the leaves, fruits and sometimes the stem.

The bacterial canker of citrus has been observed in all citrus growing areas in Jaffna and the disease may probably have been the cause of the decline in citrus yields in Sri Lanka in the recent past. The frequent occurrence of this disease on citrus plant prompted the present investigation on some aspects of the biology of the disease causing organism.

This disease has been observed in many plants of the citrus group, including orange, grapefruit, lime, mandsrin and takity seedless variety. Observations have shown that orange appears to be the most resistant to bacterial canker, whereast takity seedless appears to be the most susceptible variety.

^{1.} Present address: Department of Biology, University of Guyana, Georgetown, Guyana

Symptoms of the disease are easily noticeable in leaves where they appear as circular, brown, necrotic areas with stabby excrescences on the leaf surface. These areas are surrounded by a pale green or yellow halo. As the disease advances the affected area becomes corky.

Danages on the infected leaves reduce the photosynthetic area and as a consequence the productivity of the plant will be affected. Infection on the fruits creates an uply appearance and such fruits undergo spoilings more quickly. It was therefore decided to study the pathogen and to explore possible ehemical control measures against it.

Materials and Methods

Isolation of pathogen and host source

The pathogen Xauthomonay ciri was isolated from haves of naturally infected portions of the leaf tissue were macerated with sterile distilled water, after surface sterilization with 001 M mercuric obloride solution. The suspension thus prepared was streaked on autrient agar medium and the plate were incubated at room temperature for 2-3 days. The bacterial culture was purified and maintained as a mono-culture. For long term study the culture was keet in a refrieerator,

As a source of host material leaves obtained from healthy Clirus uncantifolia plants were used. Insoculation was carried out generally on the leaves between the second and seventh positions on the twig, as they showed fair avesceptibility to the disease. Before inoculation the leaves were surface sterilized and subsequently washed thoroughly with distilled water.

Inoculation of leaves

During inoculation, pricks were made gently on the leaves to cause minute non lettal wound by means of a sterile pointed needle. The leaves were then dripped in a sample of bacterial suspension which was prepared by suspending a loopful of the inoculum from a 24 h old culture in sterile distilled water. The concentration of the inoculum was usually determined prior to inoculation with a haemocytometry.

After inoculation the leaves were kept in transparent plastic boxes lined with moist blotting paper and incubated at room temperature. The extent of infection was assessed after eight days of incubation, as the mean number of infection sites obtained per leaf.

Studies on the course of development of disease

Initially the development of infection on leaves was studied under laboratory conditions. For this purpose, leaves that were inoculated with the baterial suspension were kept in humid transparent plastic boxes and maintained af room temperature. The leaves were examined for changes associated with the disease daily for about twelve days.

Similar studies were made under natural conditions on plants that were grown in the botanical garden. For this purpose, actively growing healthy twigs were selected and the kewes inoculated with bacterial suspension and observed

for symptoms upto a period of three weeks.

Transverse sections of the leaves through the infection sites were examined to discern the morphological and histological changes associated with the disease.

Effect of different methods of inoculation on the extent of infection

It vas felt desirable to investigate the effect of different methods of inconclution of the pathogen to see which method was the most effective in causing infection. For this purpose, surface sterilized citrus leaves were divided into three stars. Once set was inconcluted by diplicit the beaves that were not subjected to prior "wounding, in the bacterial surposes." On the star was not supposed to the star which the star was inconcluded by treating with the bacterial surposed on the star was not supposed to the star was not supposed

Effect of physical factors on extent of infection

Effect of inoculum density. Bacterial suspensions of different concentrations were used to inoculate leaves of similar ege by the pricking method and the mean value of infection sites per leaf was calculated.

Effect of temperature. In this, sets of leaves were inoculated with bacterial suspension by the pricking method and incubated at 25° C, 30° C and 35° C and the mean number of infection sites per leaf calculated.

Effect of meis'ure. Droplets of bacterial suspension were placed with a merodiptete on leaves that were wounded. In one set of leaves the droplets were dried immediately after incoulation and the other set was kept wet throughout the period of incubation and the symptoms assessed as above.

Effect of chemicals on bacterial growth

The effect of Bordeaux mixture, Avitazol, Copper Sandoz, Cupravit, steptomyón, tetrogetina and chiaramphenicol were inwasigated on the bacterium growno. Interpreta en and chiaramphenicol were inwasigated on the bacterium growno mutitori agar medium (Wheeler, 1992; Mehrotra, 1989). For each chemical to compound paperrad et concentrations of 100 ppm, 500 ppm and 1000 ppm was incorporated separately into molten untrient agar. These pates were seeded with 0,10 ml of the bacterium at a concentration of 10° cellylm. After two days of incubation at room temp-rature the number of colonies that developed in each nate was noted.

Effect of chemicals on development of infection in leaves

It was perinent to find out if the chemicals used in the in viro study in the previous experiment had a similar or variable effect on infection on the leaf. Leaves were surface sterlized and dipped in different concentrations of chemicals used in the previous experiment. After air drying the leaves were soaked in the beaterial suspension after making pricks and incubated at rough emperature in petri disher lined with moint filter paper. Controls were emperature in petri disher lined with moint filter paper.

Results

Course of disease development

Symptoms began to develop as brown spots on the fourth day after coultains. Subsequently the area surrounding these spots became pela green in colour. By the sixth day, the surrounding area turned yellow and by this time light yellow coxity out-growths appeared from the contre of the lesions. By about the eighth day after inoculation the center of the lesion turned brown and became hard. These resembled the typical canker symptoms observed in plants

In similar studies undertaken under natural conditions on plants that were grown in the botanical garden, the symptoms began to appear by about the fourth day after inoculation but typical symptoms appeared only after eighteen days.

Although the disease was observed on the upper and lower leaf surfaces the symptoms were more prominent on the upper surface. The affected areas showed the presence of corky protuberances. Both the palisade and spongy parenchymatous tissues were damaged. The infected cells breame necrotic. The bacterial cells were found intracellularly within the mesonbull cells.

Methods of inoculation

The mean values of the number of infection sites per leaf as a result of pricking, spraying and dipping the leaves in the bacterial susp:nsion were 7±3, 2±1 and 2±1 respectively.

It appears that all three methods are effective in causing infection. However, pricking has been more successful in causing infection than the other two methods. This suggests that one of the percequisites for successful infection is wounding which might happen under natural conditions when leaves can be damaged by wind, insects, or during handling of the crop. Infections that appeared on leaves that were not pricked suggest that the bacteria could also enter the leaf through natural openings such as storms.

Effect of physical factors on the development of infection

Effect of inocolum density. The results given in the Table 1 show that bacterial concentrations of 10° cells/ml and above are required in order to cause successful infection.

December 1986

	Concentration of bacterial suspension in cells[ml		Average number of infection sites per leaf (Mean(±SD)					
109	1.7		7 . 7		9+1		-	
10 ⁸					7±1			
107		*			6 ± 1			
10e					4 ± 0			
10s					0			
104				-	0			

Effect of temperature. Observations on the number of infection sites revealed that at 30° C the infection was higher suggesting that this temperature favours infection.

Effect of moisture. It was observed that symptoms developed equally on the leaf surfaces that were kept moist after inoculation, as well as in those which were dried immediately after inoculation. This indicates that the bacteria can cause infection under both wet and dry conditions.

Effect of chemicals on bacterial growth. On nutrient agar medium the bacteria formed light yellow coloured colonies which were spherical with entire margin. The colonies were shiny with a convex surface. Individual bacterial cells were rod shaped without a capsule. They were gram negative and possessed only one flagellum. The cells measured 15 µm long and 7.5 µm wide.

The effects of the different chemicals on bacterial growth in nutrient agar medium are given in Table 2.

Table 2. Effect of chemicals on bacterial growth

Concentration of chemicals		Average on diffe	number o	of coloni icals (N	es per pla fean ± Si	ate D)	1
(ppm)	Bordeaux mixture	Chloram- phenicol	Tetra- cycline	Copper Sandoz	Cupravit	Antracol	Strepto- mycin
0(Control)	926+7	930±8	928±14	931±13	921±9	926 ± 18	929±8
	800+39	0	0	103 ± 5	302 ± 11	313 ± 5	102 ± 4
	624 + 8	0	0	39±5	261±10	117±6	59 ± 5
	354±11	0	0	21±4	221±8	0	16 ± 2

Vol. 1, No. 1

The results indicate that chloramphenicol and tetracycline reduced the development of the bacteria dramatically by completely suppressing its growth at 100 ppm. Copper Sandoz, Autracol and streptomycin are effective in control-ling the bacterial growth at a concentration of 1000 ppm, on artificial medium.

Effect of chemicals on the development of infection in leaves.

The results of this investigation are given in Table 3.

Table 3. Effect of chemicals on the development of infection in citrus leaves

Concentration of chemicals	Average number of infection sites per leaf on different chemicals (Mean ± SD)							
(ppm)	Bordeaux mixture	Chloram- phenicol			Cupravit	Antracol	Str.pto mycin	
0 (Control) 7±1	8±1	9±2	7±1	7±1	7±1	9±1	
100	4±1	2 ± 1	0 .	3±0	6±1	6±2	2 ± 0	
500	4 ± 0	1±1	0	1 ± 1	3±0	4±1	1 ± 1	
1000	7 ± 2	0	0	1±0	1 ± 1	4 ± 0	1 ± 0	

Tetracycline is highly successful since it completely inhibits the development of the symptoms in the leaves even at a concentration of 100 ppm, whereas chloramphenicol, streptomycin, Copper Sandoz and Cupravit are successful to a high degree at a concentration of 1000 ppm.

Discussion

Bacterial canker disease of citrus caused by Xonthomonae citri is one of the filter and frest diseases of citrus and has been found to cause infection in all groups of citrus plants. No systematic study of the disease has so far been carried out in ST clanks. Since there are no records of the damage caused to the citrus plant by the puthogen it has been difficult to estimate the quantitative losses or damage.

As a result of infection centres becoming necroic and the development of coty protuberances on the leaf surface, the available photosynthetic area becomes less, which impodes the rate of passing the passing the facility. Occurrence will instructly affect the growth of the plant and they provide the facility of disease on the fruit certainly impairs the quality of the facility. However, there are necessary to assets these adverse effects.

The present investigations have also indicated that the pathogen gains access to leaves through natural openings such as stomata and through wounds caused artificially. However the latter seems to cause severe and successful infections. Also wounding of fruits caused by insect borers is the primary cause of bacterial entry into fruits.

The requirement of the relatively low temperature and the presence of moisture on leaf surface may suggest that infections can be severe during rainy season. But the disease is also severe during dry conditions. This may be partly due to the low temperature prevailing in the night which is conducive to the entry of bacteria.

No control measures have so far been adopted against the bacterial canker of citrus. The present study indicates that particularly tetracycline along with the chemicals chloramphenicol, streptomycia, Copper Sandoz and probably Curravit can be used at low concentrations for the control of the disease.

The present investigation only reveals certain conditions that favour disease incidence and provides some information on certain aspects of the biology of of the disease and the effect of some chemicals on the disease. Further studies are necessary to assess the extent of damage caused by the pathogen to citrus plants and to develop methods to suppress the disease under field conditions.

References

- Agrios, G. N. (1978) Bacterial cankers, pp. 489-491. In Plant Pathology. Academic Press, New York.
- Mehrotra, R. S. (1980) Citrus canker, pp. 636-638. In Plant Pathology. Tata Mc Graw Hill Publishing Company, India.
- Wheeler, B. E. J. (1969) Cankers and Scab, pp. 241-247. In An Introduction to Plant Diseases. Page Bros (Norwich) Ltd., U. K.

Accepted for publication 15 August 1986

STUDIES ON THE FRUIT ROT DISEASES OF BRINJAL,

R. V. S. SUNDARESAN, SIVANESWARY KANAGASUNDARAM

(Department of Botany, University of Jaffna, Jaffna, Sri Lanka)

Vingnanam - Journal of Science 1: 26-28 (1986)

ABSTRACT An insuliazion was carried out on the locidence and severity of the first bot distance of beingli. Admiss selenges L. Eleven species from passociated with bringin have been isolated and idea-ciffed. Pathocamicity studies have revealed that Free of these fingular species are responsible for casoling not in bringial. These are Please app., Beinglighted inferious, Rather's type, Admiss app., and Parsies app. The control of the Cont

Introduction

Brinjal, Solamun melongena L. is an economically important fruit and is used as a vegetable throughout the world. Fruit rot of brinjal is an important or barvest disease that causes considerable losses during transit and marketing of the fruit. It is widely prevalent in the Jaffna district in Sri Lanka, particularly during storage and transit of the produce.

Materials and Methods

General. The brinjal variety Thirusuelvey purple was selected for this investigation. The survey was carried out during two harvesting seasons, the raisy season extending during the months of November and December and the dy harvesting season during the months of March and April, on local plantations, and subsequently at the markets in Thirunelvely and Architevely in Jaffrag ditrict. The incidence of the fruit rot was assessed as a percentage of the sum total of fruits at each location. A cross section of the farmer and loses occurring during havest in tenatic, futior actors across section of the farmer and loses occurring during havest in tenatic, futior across and at the stills.

Isolation of the pathogens Rotten fruits were collected from plantationous and markets for inswetigation in the laboratory. The pathogens were isolated to by cutting discs (3 mm thick) of rotten tissue under aspetic conditions, aftered to surface sterilization in 0.01% mercuric chlorids. The discs were then plated on mall cutract agar and insolated at 30°C. Pure isolates of the causative organisms were obtained by the standard technical.

^{1.} Present address: Department of Biology, University of Guyana, Georgetown, Guyana.

Determination of the pathogenicity of the fungi. Healthy fruits were surface sterilized and later washed in three changes of sterile distilled water. A short cylinder (4 mm long) was bored in the fruit with a cork borer (1.5 cm diameter), making sure that the bored tissue was intact within the fruit after the cork borer was withdrawn. Two drops of the spore suspension (density. 4.8×10°/ml) of an isolate were placed around the outline of the wound caused by the boring. Comparable controls too were placed inside plastic boxes lined with moist filter paper and regular observations made. Reisolation of the organisms was carried out and Koch's postulates established.

Results and Discussion

Fungal species associated with the rot

Effen species of fungi were found to be associated with brinjal fruits in the present investigation. The fungal species encountered are listed below;

- 7) Bipolaris hawaiiensis 1) Phoma spp. 2) Botryodiplodia theobycomakTY Op 8) Curvularia clovata
 - 9) Trichothecium roseum 3) Fusarium spp. Vo Cylindrocarpon spp. 4) Rhizopus spp.
 - 1) Cochliobolus australiensis
 - 6) Nierospora spp.

Test for Pathgoenicity

In pathogenicity studies out of the elven fungal species encountered, only Phoma, B. theobromae, Fusarium, Rhizopus and Absidia were found to be pathogenic. Previous reports have mentioned only Phomopsis vexans as the causative agent of the fruit rot of brinial (Pawar and Patel, 1957; Abeygunawardena, 1969; Chowdhry and Hasija, 1979).

Conditions favouring incidence of severity of the disease

Harvesting of fruits is done manually. In the course of the survey it became evident that as a result of some of the handling practices adopted during harvesting, packing and transportation, a sizeable percentage of the fruits acquired wounds which facilitated the development and spread of the rot disease. Insect boring of the fruits too was commonly observed both in the fields and in the markets which too made the fruits more susceptible to infection

The incidence of fruit rot in the field was low. (1-4%). However. in plantations where harvesting was unduly delayed, higher levels of incidence (10-70%) were recorded. The incidence and severity of the rot appeared to increase from the fileds to the markets where as much as 30% and 40% of the produce was lost during the dry and rainy harvesting seasons respectively.

Chief symptoms exhibited by the different fungal species

Phoma spp. The disease first appeared as minute dull sunken and dusty purple spots which later merged forming large rotten areas with concentric rings of fungal goowth. Within one week, the rotten areas became covered with black heads, which when mature produced condisid. At a later stage the infected fruits were observed to be covered with grey mycelial mats from which numerous pycelidal eveloped. There has been a report that the species Phoma is the same as Phomogetir rexent which is known to cause fruit rot in brinjal; r (Chowdhury and Hasia), 1979).

B. theoforomer. The appearance of symptoms occured only 5-8 days after incoulation. Initially water coaked leaions appeared, but as the disease progressed, the infected regions appeared dark brown and depressed, being surround-ed by a water soaked halo. At later stages (15 days after incoulation), the leaions became covered with grejish myceilium of the causative organism and numerous premidial developed on the contraction.

Mitague spo. The symptoms started appearing 24 hours after inoculation as circular pale frown water solded areas which enlarged rapidly covering a grater part of the fruit. The flesh became soft and succulent. At later stages approximately four days after inoculation, whitish grey mycelium covered the surface of the collapsing fruit.

Absidia spp. The symptoms produced were very similar to those caused by Rhizopus spp.

Fusarium spp. The symptoms appeared 2 —3 days after inoculation as water soaked lesions, which were not as well defined as in the rot caused by Rohizopus spp. The lesions enlarged, rapidly, turned brown and were covered by a white mass of mycelium which appeared powdery.

High humidity was found to enhance the growth of these fungi. The rots caused by *Phoma* spp. and *B. theobromae* were by far, the soverest,

Deferences

Abeygunawardena, D. V. W. (1969) Diseases of root crops and vegetables. pp. 123-162. In Diseases of Cultivated Plants. The Colombo Apothecaries Co. Ltd.. Colombo.

Chowdhury, S. R. and Hasija, S. K. (1979) Pathological studies on Phomopsis vexans causing soft rot of brinjal fruits, Phytopathological Notes 32, 495-496.

Pawar, V. H. and Patel, M.K. (1957) Phomopsis blight and fruit rot of brinjal. Inflien Phytopathology io. 1154—150

THE POTABILITY OF JAFFNA GROUND WATER CHELLIAH FLANKUMARAN

(Department of Mathematics and Statistics, University of Jaffna, Jaffna, Sri Lanka)

Vingnanam - Journal of Science 1: 29-39 (1986)

Vingnanam — Journal of Science 1: 29—39 (198

ASSPACT Chories and Membras concentration in ground water of Valifies area" were analysed with the said of Time seeies analysis and Stochastic processes in statistics. The new selected for this research consists of the waters protocol of Indian personance of the seeing control of the s

Introduction

Ground water is a major natural resource of laffina positionils, Sti Lank, and it has been used for domestic, agricultural and industrial purposes. To demand for ground water has increased considerably over the past two decodes. Ratifial is the only source of reshester for the grown state two decodes. Ratifial is the only source of reshester for the grown state classes the salicity problem in ground water to an alarming degree (Pavaneswaran, 1980). The sain of this work is to analyse the chemical properties such as Chleride and Hardess concentration of the ground water over a period of 66 months from language (Pavaneswaran, 1980). The particular search is falled to the properties of the ground water over a period of 66 months from language (Pavaneswaran, 1980). The particular search is falfina town.

. Materials and Methods

The area selected for this research is the western portion of Jaffua and Thondamannar (Fig. 1).

Model and Thondamannar (Fig. 1).

Monthly data were available for chloride and Hardness for a period of 6 months from January 1979 to June 1984 at the Water Resources Board (WRD), Jaffna. No data are available after this period. The WRB has collected water samples from 250 wells on a random basis in the "Jaffna area". However only 150 samples give successive data for the period specified above. There were some production of the period specified above. The wells were protected on a select sixty eight wells among them Figures 1 and 2. When selecting the wells, due attention was paid to obtain a minimum of one samples and a maximum of four samples from a given place to represent the study area. The decision as to how many samples from a given place to represent the study area. The decision as to how many samples from a given place to represent the study area. The decision as to how many samples from a given place to represent the study area. The decision as to how many samples from a given place to represent the study area. The decision as to how many samples from a given place to represent the study area. The decision as to how many samples from a given place to represent the study area. The decision as to how many samples from a given place to represent the study area. The decision as to how many samples from a given place to represent the study area.

Fig. 1. Distribution of the sampled wells, separated on the basis of increasing (**) and decreasing (0) chloride concentration trends in the study area in the Jaffna peninsula.

CONCENTRATION

Fig. 2. Distribution of the sampled wells, separated on the basis of increasing (●) and decreasing (O) hardness concentration trends in the study area in the Jaffna peninsula.

22

Aithough data were available for only a short period of 66 months an attempt has been made to use these data to elucidate some facts about the ground water in Jaffna. The locations and samples selected for this study and the actual numbers of samples at each location are given in Table 1.

Table 1: The distribution of the samples used for analysis, in the different locations, in the area selected in Jaffna peninsula. (Source: Water Resources Board, Jaffna).

No.	Place	Sample numbers	Number of	samples
1.	Jaifna	393, 396, 457, 460	4	
2.	Thirunelyely	380, 386	2	
3.	Nallur	293, 298, 300	3	1
4.	Kokkuvil	377, 384, 385, 412	4	
5.	Kondavil	313, 316, 370	3	
6.	Anaikoddal	406, 464, 470		1
7.	Manipay	428, 435, 449, 453	4	
8.	Urumpiray	208, 342, 360	3	
9.	Kopay	243, 247	2	
10.	Maruthanamadam	348, 356, 442	3	
11.	Negrvely	159, 233	2	
12.	Chunnakam	43, 328, 332	3	
13.	Vasavilan	80, 81, 87		3
14.	Atchuvely	91, 96, 101		1
15.	Thondaimanaru	85, 90		2
16,	Teltippalai	38, 53, 67		3
17.	Kankesanthurai	58, 59, 60, 63		4
18.	Keerimalai	48, 49, 55		3
19.	Pandattarippu	02, 28	-	2
20.	Mathagal	29	1	
21.	Siththenkerny	01, 14		2
22.	Chankanai	17, 500		
23.	Moolai	06, 524	-	
24.	Araly	536, 540		
25.	Vaddukoddai	515, 528, 530		

The oblorde level which is related to the salinity of water is the Chloride (C) concentration in water. The Hardenss level is the total concentration of Calcium (CA), and Sophate (CO), in water. Since the percentage composition of other composition of compositi

Table 2: Drinking water standand for different substances found in water specified by World Health Organization. (Source: Water Resources Board, Jaffina.)

Substances	Maximum acceptable level		Maximum allowable level	
Manganese	0.100		0.500	
Iron	0.300	n,	1.000	
Copper	1,000		1.500	
Calcium	75,000		200.000	
Magnesium	50.000		150.000	
Chlorine	200,000		600,000	
Sulphate	200.000		400.000	
Phenolic	0.001		0.002	
Carbon, Chloroform extract	0.200		0.500	

Results

Trend Analysis

The observed monthly data (January 1979-June 1984) consist of 66 monthly time series values of Chiefrie and Harforest. These data can be analysed with the sid of time series analysis described in Appendix 1. Five-month moving averages have been calculated for Chiefrie and Hardares to find the linear trend. The original observations, second step moving average trends and linear trends of in-creasing and decreasing Calcride consecutation are illustrated in Fig. when the consecutation is the consecutation of the contraction of the contraction

From the trend analysis 136 trend equations were found for Chloride and Hardness. By considering the tangent of each line one could find whether the line decreases or increases. If a trend line decreases, the time series generally decrease and vice-versa. The findings are given in Fig. 1 and 2.

Seasonal Analysis

Among one hundred and thirty six time series of Chloride and Hardness, only one time series was abund for dealtied study of seasonal analysis and the seasonal indices have been found. The Chloride concentration in sample 460 in Affins town was selected for a dealted study. In this analysis one year was considered a short run and the twelve months considered were revelve seasons. Seasonal Hocustions (ndice) were obtained by using the original time series.

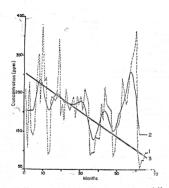


Fig. 3. Chloride concentration (ppm) in the water sampled from well No. 395 over a period of 66 months, showing the decreasing trend, Curve (1) shows actual values, ourve (2) the moving average and curve (3) the linear trend.

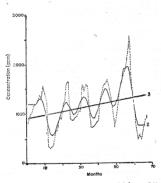


Fig. 4. Chloride concentration (ppm) in the water sampled from well No. 399 over a period of 66 months, showing the increasing trend. Curve (1) shows actual values, curve (2) shows the moving average and (3) the linear trend.

The additive model: 0=T+S+R is used, where O, T, S and R are original observation, trend value, seasonal variation (regular pattern) and residual variation (firegular pattern) and residual variation (firegular pattern) and residual variation (firegular pattern) respectively. In this model, trend values are calculated by finding the first step five month moving averages. The sixty observations from January 1979 to December 1938 were used for this analysis. Table 3 gives the seasonal in dices of this sample. The spelical movement (long run regular pattern) is neglected here because the nevid of data collection is fairly values.

Table 3 Seasonal indices for chloride concentration (salinity) in sample well No.

Season	Fluctuation	Season	Fluctuation	
January	-288-721	July	35.379	
February	-15.471	August	-16.021	
March	4.379	September	-122.821	
April	17,179	October	102,179	
May	25.579	November	277,029	
June	-23.221	December	-55,471	

It is seen from the table that seasonal indices reached their highest value (277.029 ppm) in November and their lowest value (-288,721 ppm) in January.

Prediction

36

From the above trend analysis and seasonal analysis the appropriate value of this sample for a specified month can be predicted. For July 1987 the value will be as follows:

y=803.89 - 0.29 [12(year - 1979)]+Month - 33

If we substitute year = 1987 and Month = 7 (for July),

y=803.89 - 0.29 [12(1987 - 1979)]+7 - 33 -783,59.

By assuming that the residual variation in July 1987 is in 0, the predicted value will be as follows:

O=T+S+R =783.59+35.379+0

=818,959 ppm

Stochastic Analysis

Stochastic analysis was used to analyse sample No. 460. The technique used in this study was successfully used in hydrological problems (Todorovic, 1978). The two state Markov-Chain described in Appendix II was used for the analysis. The states of the concentration GOOD or BAD are denoted by Gor B.

If an observation lies between the maximum acceptable and maximum allawable oncentrations, it is classified as "GOOD" state and otherwise it is classified as "RAD" state. For Chloride these limits are 200 ppm and 600 ppm and for Hardness 300 ppm 750 ppm.

The state space is S=(G,B). The classification of states and transitions of states are given in the following Markov process

The first step transition probability matrix is found and is: G R

$$P = \begin{pmatrix} G & 0.71 & 0.29 \\ 0.08 & 0.92 \end{pmatrix}$$

December 1986

The limiting probability matrix is calculated as

The limiting probability matrix is calculate
$$\frac{G}{B}$$
 B

Lt $P = \frac{G}{B} \begin{pmatrix} 0.2162 & 0.7838 \\ 0.2162 & 0.7838 \end{pmatrix}$

Among sixty eight samples selected for this study, twenty seven are decreasing and forty one are increasing in Chloride (Fig. 1). On the whole, increasing chloride samples elucidate the alarming situation of Chloride problems on the basis of statistical analysis. Therefore due attention has to be paid to manage the ground water resource before it reaches a stage where no planning could solve this problem effectively. Fig. 2, reveals that unlike Chloride concentration there is a balance between increasing and decreasing trends in the Hardness concentration in the samples studied. Among the sample wells, while thirty four show the increasing trend, the rest are decreasing. From the Stochastic analysis it is found, in the long run the probability limit of GOOD state to BAD state of ground water for a particular area in Jaffna town (Sample No. 460-Fig. 3), is as given in the following form,

Pr (GOOD) = 0.2162

Pr (BAD) = 0.7838 By comparing the above limiting probabilities it was elucidated that the chance for a "BAD" state is more probable than the chance for a "GOOD" state in the ground water of a particular area in Jaffna town.

The changing Chloride concentration has become a major problem in the ground water of Jaffna peninsula. Most of the fresh water wells face salinity problems seasonally or yearly. This may be due to intensive farming

practices using chemical fertilizers and pesticides which leach through soils and mix with the ground water. Further, over-extraction of water by machine pumping could also aggravate the salinity intrusion into the fresh water lens. The wells which are not subjected to the above problem may have better recharge conditions.

On the basis of the above analysis in the particular area, we conclude that the ground water of this area will become unsatisfactory. Percentage chloride in the water of the wells in this area may continue to increase leading to drinking water problems. Some drinking water wells may have to be eventually abandoned. Similar analysis for other stations will give meaningful results of the nature and type of water and its future potability. The need for more indepth study of this problem in the future is indicated by the results.

Acknowledgements

I wish to acknowledge my gratitude to Mr. S. Kanagapathan, Computer Unit Department of Mathematics and Statistics, and Mr. K. M. Puwaneswaran Department of Geography, University of Jaffna, for their valuable suggestions during this study. I also wish to express my thanks to the Engineer and the Research Officer of the Water Resources Board for their help in collecting the data.

References

- Srinivasan, S. K. & Mehata, K. M. (1976) Stochastic Processes, Tata Mcgraw-Hill Publishing Company Ltd., India. 388pp.
- 2. Croxton, F. E., Cowden, D. J. & Klein, S. (1964) Applied General Statistics. Prentice Hall of India Private Ltd. 754pp.
- 3. Puwaneswaran, K. M. (1986) Spatial, Temporal and Human dimension of under ground water of Jaffna peninsula. Beitrage Zur Hydrologie 5.2, 827-845.
- 4. Toodorovic. P. (1978) Stochastic models of floods, Water Resources Research 14,345 - 350.
- 5. Yeomands, K. A. (1968) Statistics for the social scientist 1: Introducing Statistics, Peneuin Books, 259 pp.

Received for publication 30 September 1986

Appendix I

The trend is the long term movement of a time series. We are interested

Trend Line

in finding a trend in terms of an equation and expressing it graphically. With given data, a graph is plotted, and the problem becomes one of litting a straight line to the data so as to show the long-run gradual growth of the time series, In this paper since the observed values of each time series is given from

January 1979 to June 1984, the linear trend values for five month moving averages are in the months of September and October 1981. When the linear trend line on the scatter diagram of a particular sample is plotted, January 1979 could be taken as origin when September and October 1981 will secure the 33rd and 34th positions respectively on the time axis.

Since we have the trend values for these months on time axis (X axis), we could measure the values of these two points on observation axis (Y axis). Hence, we have two points on X—Y plane. This can be used for plotting the linear trend line of the time series given for the sample. If we tell the respective trend values be y, and y₂, then the two points are (33, y₁) and (34y₂) for the linear trend line. The equation of the trend line can be written as follows:

 $y=y_1 + (y_2-y_1)$ (X-33); If we modify the time variable X as; X=12 (Year-1979) + Month

the modified equation will be as follows:

 $y = y_1 + (y_2 - y_1)$ (12 year - 1979) + Month - 33

By using the above equation sixty eight trend lines for the Chloride and Hardness concentration of each sample have been obtained and these could be used for forcasting for any month of the year after having derived appropriate seasonal index for a particular month.

Appendix II

Transition probability matrix

December 1986

For a homogeneous markov-chain the nth step transition probability function for the n transitions from the state i to the state j is given by

$$P_{ij}(n) = Pr[X_n = j/X_o = i]$$

If the number of states in this markov chain is finite we may express these probabilities by a transition probability matrix.

In this paper, since two states were considered a 2x2 transition probability matrix was constructed. If the first step transition probability matrix of this two state Markov-chain is

$$P = {\begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}}; o < a, b < 1$$

then the nth step transition probability matrix can be written as:

$$\begin{array}{lll} & & & & \\$$

For the limiting probability distribution of states,

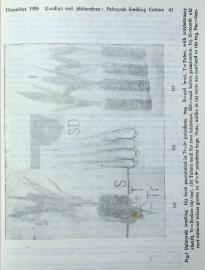
Lt (P) =
$$\frac{1}{a + b}$$
 $\begin{pmatrix} b & a \\ b & a \end{pmatrix}$

A NEW METHOD FOR CULTURING SEEDLINGS OF PALMYRAH PALM BORASSUS FLABELLIFER L.

S. KANDIAH AND S. MAHENDRAN (Department of Botany, University of Jaffina, Jaffina, Sri Lanka.)

Vingnanam - Journal of Science 1: 40-43 (1986)

ABSTRACT The remotive mode of garmination of palenyah, Bosanar flobilifer L. seed does not permit garmination in handy transportable containers. Sect-free tubers inhibited roots whin planted in a medium maintained at 35° C, providing a basal temperature 10° C above amblent. The rooted tubers could be grown in handy polythene bugs subsequently.


Introduction

The palmyrah palm, Borassus [slabslijfer L, has now been recognised as an undertuilist op plant of Asia and Africa. Endowed with characteristic poet and disease resistance and requiring very limited agricultural inputs, its potential as a plantation crop for the developing countries of the tropics remains largely unapped—Kandiah: The FAO/IDANIDA ponsored workshop on the palmyrah meld in Jaffina, Sci Lankia in February 1928, highlighted the need for scientific investigation into many aspects of growth and cultivation of the palm. Kovor 19283 subsciencelly reviewed the current state of knowledge of the palmyrah palm.

Most of the palmyrah palm stands of the world today are unplanned naturally established seedlings of the palm. Dearth of land and increase in population in the regions of palmyrah has already checked such natural establishment of palmyrah. Purposeful planting and protection of palm seedling has now become a necessity.

Seedlings raised in nurseries fail to re-establish in the field after transplanting. Raising seedlings in transportable marrery bags or post bas proved difficult due to the mode of germination of palmyrah seeds being 'temotive', where, on germination the colytéchoaux jetath (appecional) elongate into the soil to considerable depth carrying the embryo with it (Dasanayake and Sivakadacheham, 1973). The authors found that the appecion grows out through the container and establishes in the soil below the container a felix. It is.

Kandiah, S. (1983) Some aspects of botany and ecology of the palmyrah palm, Borassus flabellifer L. FAO / DANIDA Palmyrah Workshop, Jaffna, Sri Lanka.

42

Palmyrah seeds planted in situ in the field establish poorly and percentages seem to the set sow as 10.20%, (Palmyrah Board, Sri Lanka – personaj communication) even though Paulsa and Muthukrishnan * percent donore than 63% germination in two months in nursery beds. Hence planting seed in situ in the field is not an ideal means of setablishing a well planned plantation.

Koyon (1981) suggests a more sophisticated approach to this problem, in the culture of excised endersy or intro on appropriate aspectime endire. The intricate nature and superses involved in this method are beyond the reach of the grower in the developing countries of the tropics. Kandial's perported that it is possible to induce adventitious roots on tubers (Seed-free seedling before the emergence of first left-Fig. 10 in a manner analogous to root induction on shoot cuttings and subsequently grow these rooted tubers in handy containers. The early results of these studies are reported here.

Materials and Methods

Palmyrah seed beds seeded at demitties of about 300 seed/m² produced tube suitable for this tadu/ in 4.0 5 month period. The seed, sheating portion of the cotyledon and remnants of the seed beat from the tuber Fig. 1 (b). The tubers were dipped in a fingicidal solution for few minutes, and then bundles of ten tubers were planted to a depth of 3 inches in a coir dust medium. Tubers were prevented from desistation by either an automatic missing system controlled by an electronic leaf (Wright Rain Ltd. UK.) or by using a separate controlled by an electronic leaf (Wright Rain Ltd. UK.) or by using a separate controlled by an electronic leaf of the root of the state by a thermostation) to the seed of the root of the state of the seed of the root of inflating end of the total special special special special special special in 2% electronic leaf with the seed of the root of inflating end of the root of the special speci

Results and Discussion

Even though root initiation started after a week, the percentage of rooted tubers varied from 30 to 80%, 80 tourn heat provided in root bin maintained at 35°C, providing a basal temperature 10°C above ambient, gave higher percentage rooting. Hormone treatment did not improve root initiation at the levels tested (1000, 2000, 3000 ppm) for indole - buyric acid and indolesses the contraction of the contraction o

Paulse, D. & Mutbukrishnan, C. R. (1983) Studies on the effect of the position of sowing of palmyrah, Brauss [Ideblifer, seeds on their germination. FAO/DANIDA Palmyrah Workshop. Jaffina, Sri Lankz.

Kandiah, S. (1985) An evaluation of propagation techniques for the palmyrah palm, Barasna flabellifer. Symposium on palmyrah. Palmyrah Development Board, Jaffna, Sri Lanka.

Fig. 1 (c) shows 16 month old seedling raised from root initiated tubers in polythene bags. These plants were found very suitable for managment under advanced nursery practices. They were also found very suitable for transport and remained viable up to 8 weeks when packed in bulk in polythene bags.

Acknowledgement

This work is being supported by Research Grant RG/85/B/II from the Natural Resources, Energy and Science Authority of Sri Lanka to Kandiah, S.

References

Dassanayake, M. D. & Sivakadacheham, B. (1973) Germination and seedling structure of Borassus flabellifer L. Ceylon Journal of Science (Bio, Sci.) Vol. 10, No. 2. 157-166.

Hartmann, H. T. & Kester, D. E. (1972) Plant propagation, principles and practices. Prentice-Hall of India Private Ltd. New Delhi. 702 pp.
Koyoor, A. (1981) Palm tissue culture. FAO Plant Production paper No. 300

Kovoor, A. (1981) Palm tissue culture. FAO Plant Production paper No. 300 Rome.

Kovoor, A. (1983) The palmyrah palm potential and perspectives. FAO Plant Production and Protection Paper No. 52, Rome. 77 pp.

Received for publication 24 November 1986

ALCOHOL FROM PALMYRAH PALM (BORASSUS FLABELLIFER L_i) FRUIT PULP

K. THEIVENDIRARAJAH AND R. KUMUTHINI CHRYSTOPHER (Department of Botany, University of Jaffna, Sri Lanka)

Vinenanam - Journal of Science 1: 44-46 (1986)

ABSTRACT The palmyraft fixed goals which is a thick viscous liquid cannot be directly used for skelole production but could be mixed with palmyrah pay resect todely, another senset sugar, solution obtained from the same plant, and femented. By fementing distorted gan and firstly pay, it is possible to consensitally convert most of the sugars to alcohol. 5.15% V/V alcoholo was obtained from a fermenting solution of Sparsa of sect todely of surface and a past of first poly. Since the part of water and 2 pasts of first poly. Since the part of the part of the part of solution as were todely fasted of firstle poly, solit goals goals goal recovery.

Introduction

The fruiting season for palmyrah is between September to December December Dering this period large quantities of fruits are produced annually. Only a small proportion of these fruits are used to extract the pulp which is not for the preparation of 'pinnatur'—an edible product. Very recently Palmyrah Development Board of Sri Lanka has started producting soft drinks, cordial and various jams from the sweet: pulp. The undiluted pulp constitutes 41% of the total fruit and contains 15–17% sugar both in the form of sucrous and invert sugar (Ratsasingam, 1987). The dried pulp referred to as pinnature ontains 13–2% accross, 28-6% invert sugar (Ratsasingam, 1987).

This paper reports some preliminary experiments on the use of fresh fruit pulp 'pinnatu' for the production of alcohol.

Experiments and Results:

Alcoholic fermentation on 'pinnatu' medium:

One litre of 'pinnatu' medium was prepared by dissolving 100g of 'pinnatu' hot distilled water. The 10%, 'pinnatu' medium was then sterilized by autoclaving at 15 lbs/sg. in. pressure for 15 minutes. The cooled medium was then inoculated with Saccharomyces cerevisiae (strain Py I), a high alcohol

I Jeganathan, N. (1983) Palmyrah fruit. Workshop on palmyrah - Organized by the Food and Agriculture Organization and The Palmyrah Development Board of Sri Lanka. 21—25th Februars., 1983.

fermentative yeast previously isolated from Palmyrah wine (Theivendirarajah and Chrystopher, 1984; Chrystopher, 1985). The initial yeast density was 2×10* cells/inl. The initial pH was found to be 5. The medium was allowed to ferment for 72 hours at room temperature of 28±2 °C.

The pH dropped to 3.6 after 24 h and remained steady. The alcohol content was determined after 48 and 72 hours of fermentation-by-coholiometer method. Since the medium contained undissolved particles, the medium was filtered and the filtrate was analysed to determine the alcohol content.

The % of alcohol (v/v) at the end of 48 h and 72 h of fermentation was 1.7% and 2.1% respectively.

Increasing the amount of 'pinnatu' in the medium made the solution too thick, probably due to the presence of fibres, pectin and other insoluble carbohydrates. Thus it would not be feasible to use higher concentrations as of 'pinnatu' in the medium for yeast femenation as it could cause problems

Alcoholic fermentation on 'pinuatu' and 'sweet toddy' medium:

in subsequent racking and distillation processes.

10 % 'pinnatu' medium contains only about 4.5—5% of sugar (w/v). This sugar content is too low to be used for alcoholic fermenation. In order to increase this amount to account 12 — 15% (w/v), the level which is used in most alcoholic fermentation processes, palmyrah sweet toddy was incorporated into the medium.

One litre medium of 'pinnatu' and sweet toddy (containing 5.5% sugar from 'pinnatu' and 6.5% sugar from palmyah sweet toddy) was prepared and incoulated with the Saccharonyees cerestive (strais PY I). The amount of alcohol produced after 48 h and 72 h of fermentation at room temperature was found to be 7.1½ and 8.7% (v/y) respectively.

Alcoholic fermentation on palmyrah fresh fruit pulp and sweet toddy medium:

The undiluted fruit pulp which consists 16–17% (v/v) stages, is a very thick, viscous laight data cannot be used directly as a melium for fermentation. It was distured with palmyrah sevel oddy and water to obtain a medium with a sugar content of about 7.2 The medium contained 6 parts of sweet This medium with parts water and 2 parts fruit pulp (6–17% w/v sugar). This medium was inconsisted with the same yeast strain. PY 1, and and contents of 5.1% (v/v) and 5.2% (v/v) were observed at the end of 48h and 72h of fermentation, prescriviely.

Discussion

The results of this preliminary study show that fresh fruit pulp and 'pinnatu' cannot be used as the sole source of raw material for alcoholic fermentation.

The sugar content will become low and not economical to ferment when a reasonable light, clear medium is prepared from fresh pulp or 'pinastu' alone, The amount of alcohol (2.1½ w/v) produced from a 10½ w/v 'pinantu' medium seems to be a reasonably good yield. The efficiency of conversion of sugar to alcohol is about 64½.

The results have shown that freshfruit pulp or 'pinnatu' could be easily mixed with sweet toddy and used as a medium in this fermentation process. The recovery of 8.7% y of selond from a 'pinnatu' - eweet toddy medium and 5.2% y'v alcohol from a fruit pulp—sweet toddy medium were good. The mixtures had 12% why of total sugar contents respectively. By diluting with sweet toddy you could utilize more of the pulp and 'pinnatu' and thus be able to convert the sugar present in the pulp to alcohol.

The fermented solution is yellow in colour as opposed to the usual milky white appearence of 'oddy' and contains a lot of materials in suspension. It also imparts a strong aroma characteristic of the fruit pulp juice. (Hence this product cannot be consumed directly like the normal toddy). However, the alcohol can be distilled for the preparation of arrack or for other industrial

There may be problems with regard to the use of fresh pulp and sweet toddy in a commercial production venture because these two raw materials are not available in sufficient quantifies at the same time. The main palmynab wester toddy season is few mombat before the fruiting season. This can be overcome if more sweet toddy could be made available by the kaivetty method (s. from matured femule inflorescences), which goes along with the fruiting season. The other alternative would be to use "pinnata" instead of fresh fruit pulp. It is also possible to use the fresh pulp with cocounts sweet toddy or with sugar-cane molasses and palmyrah molasses which are byproducts of the sugar industry.

References

Chrystopher, R. K. (1985). Studies on the fermentation of palmyrah (Borassus flabellifer) palm sap. M. Phil. Thesis University of Jaffina.

Ratnasingam, K. (1967). Palmyrah pulp. CISIR bulletin. No. 2. p. 35-38

Theivendirarajah, K. & Chrystopher, R. K. (1984). Studies on the microbial fermentation of palmyrah (Borassus flabellifer) palm sap. Proceedings of the Sri Lanka Association for the Advancement of Science. 40 (1): 53 (abstract).

THE FRAME FACTOR - AN APPROACH TO SPECIAL RELATIVITY: A REVIEW

M. R. R. HOOLE

(Department of Mathematics and Statistics, University of Jalina, Jafina, Sri Lanka)

Vingnanam - Journal of Science 1: 47-55 (1986)

ABSTRACT. This paper approaches the transformation rules for field quantities in Chesical Field forcety by naturing with an a priori conservation law concerning nun-hers which amounts introduced theorem in nonrelativities physics. A frame facer is then introduced theorem in nonrelativities physics. A frame facer is the introduced theorem in nonrelativities physics. A frame facer is the intended to the concerning the control of the con

Introduction

The consequences of the Special Theory of Relativity have become well known since the theory was first put forward by Einstein in 1905. Since that time different people who have thought about the theory have come up with various ways of approaching the theory. This latter exercise is a quest for clarity - to make the theory more intuitively self-evident, Indeed Karl Popper (1963) has pointed out that intuition is a product of expectations, and we are referring here to the expectations of a person with a basic grasp of modern Physics. Even here an approach which one person may find satisfying may not be quite satisfying to another. One may mention here the problem of instrumentalism (Popper, 1975). Some would demand that definition of Physical concepts be accompanied by instrumental means of verification or measurement. While notions such as simultaenity of events in an observer's frame and the length of a moving rod can be defined purely theoretically, some writers take great pains to describe how these can in principle be verified or defined by a judicious deployment of time pieces and signalling devices. Einstien began as an instrumentalist and later changed his stance (Popper, 1975).

The present paper presents an approach which the author has hitherto not come across. We begin with an a prior intuition about space and time in spirit of Kant (Korner, 1974). This assumes that matter takes the form of a spirit of Kant (Korner, 1974). This assumes that matter takes the form of a closed surface in any reference frame, the rate of decease of population within the surface is easy to the rate at which the population crosses the surface bottom (This principle can be given a rigorous topological formulation.) We take off from here with the said off Lorentzina Kitematics.

Vol. I, No. 1

The sugar content will become low and not economical to ferment when a reasonable light, clear medium is prepared from fresh pulp or "pinantu" alone. The amount of alonbol (2.1%, v/y) produced from a 10%, w/v "pinantu" alone, seems to be a reasonably good yield. The efficiency of conversion of sugar to alonbol in both 64% of the control of the pinantum of the pina

The results have shown that fresh fruit pulp or 'pinnata' could be assigned with sweet toddy and used as a medium in this fermentation process. The recovery of 8.7% yiv alcohol from a "pinnata" sevent toddy medium ware good. The stress had 12% yiv and 10% yiv of total sugar contents respectively. By mixtures had 12% yiv and 10% yiv of total sugar contents respectively. By the stress of the superior to the super

The fermented solution is yellow in colour as opposed to the usual milky white appearence of woddy and contains a lot of materials in suspension. It also imparts a strong aroma characteristic of the fruit puly pince. (Hence this product cannot be consumed directly like the normal today,) flowerer, the alcohol can be distilled for the preparation of arrack or for other industrial laws.

There may be problems with regard to the use of fresh pulp and sweeted in toddy in a commercial production vecture because these two raw materials are not available in sufficient quantities at the same time. The main palarysts west toddy season is few months before the fruiting season. This can be overcome if more sweet toddy could be made available by the kaivetty method, for more than the construction of the fruiting season. This other alternative would be to use "pinnatur" instead of fresh fruiting plants in the construction of the products of the super-cane molasses and palmyrah molasses which are byproducts of the sugar industry.

References

Chrystopher, R. K. (1985). Studies on the fermentation of palmyrah (Borassus flabellifer) palm sap. M. Phil. Thesis University of Jaffna.

Ratnasingam, K. (1967). Palmyrah pulp. CISIR bulletip, No. 2, p. 35-38

Theivendirarajah, K. & Chrystopher, R. K. (1984). Studies on the microbial fermentation of palmyrah (Borassus flabellifer) palm sap. Proceedings of the Sri Lanka Association for the Advancement of Science. 40 (1): 53 (abstract).

THE FRAME FACTOR - AN APPROACH TO SPECIAL RELATIVITY: A REVIEW

M. R. R. HOOLE

(Department of Mathematics and Statistics, University of Jatina, Jafina, Sri Lanka)

Vingnanam - Journal of Science 1: 47-55 (1986)

Vingnanam — Journal of Science 1: 47-55 (1986)

ABSTRA-LT. This maner approaches the transformation rules for field quantities in Classical Field theory by stating with an a prior' content value has concerning numbers which amounts to the divergence theorem in non-relativistic polysics. A frame factor is then introduced to obtain suitable candidates for Lorentz—covariant 4—vectors. The frame factor is determined by requirements of the particular field theory concerned.

Introduction

The consequences of the Special Theory of Relativity have become well known since the theory was first put forward by Einstein in 1905. Since that time different people who have thought about the theory have come up with various ways of approaching the theory. This latter exercise is a quest for clarity - to make the theory more intuitively self-evident, Indeed Karl Popper (1963) has pointed out that intuition is a product of expectations, and we are referring here to the expectations of a person with a basic grasp of modern Physics. Even here an approach which one person may find satisfying may not be quite satisfying to another. One may mention here the problem of instrumentalism (Popper, 1975). Some would demand that definition of Physical concepts be accompanied by instrumental means of verification or measurement. While notions such as simultaenity of events in an observer's frame and the length of a moving rod can be defined purely theoretically, some writers take great pains to describe how these can in principle be verified or defined by a judicious deployment of time pieces and signalling devices. Einstien began as an instrumentalist and later changed his stance (Popper, 1975).

The present paper pessents an approach which the author has hitherto not come across. We begin with an a prior intuition about space and time in spirit of Kant (Korzer, 1974). This assumes that matter takes the form of a population of disesters particles. The given a motion of particle matter and a closed surface in any reference frame, the rate of decrease of population within the surface is cast to the rate at which the population crosses the surface boundary. (This principle can be given a rigorous topological formulation.) We take off from here with the slid of Lorestzines (Kiematics.

48 Preliminaries:

We begin with the statement of some results from Lorentzian Kinematics (Panofsky & Phillips, 1962). Take two observer frames $\Sigma = OXYZ$ and $\Sigma^{\dagger} = O^{\dagger}X^{\dagger}Y^{\dagger}Z^{\dagger}$ which coinside at time t=t'=0 and where Σ^1 moves with uniform velocity v alone the x-axis of Σ . Then for any event which takes place at (x,y,z,t) in Σ , the corresponding co-ordinate in Σ' are given by (x',y',z',t') where X'=Y(x-vt), y'=y

z' = z, $t' = Y_1 t - \frac{vx}{a^2} - (1)$

where $Y=(1-v^2/c^2)^{-\frac{1}{2}}$

The reverse transform is given by x=Y(x'+vt'), $t=Y(t'+\frac{vx'}{c^2})$ Writing (x1,x2,x3,x4) for (x,y,z,ct) and (x1',x2',x3',x4') for (x',v',z',ct')

we can write these in tensor form as $x^{i'} = L_i^i x^j$ and -(2)

xj=Mjxi'. L and M=L-1 can be written in matrix form as

 $L = \left\{ \begin{array}{cccc} Y & 0 & 0 & -3Y \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right\} \quad M = \left\{ \begin{array}{cccc} Y & 0 & 0 & Y\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right\} \quad , \quad \beta = \frac{Y}{C} \qquad -(3)$

These are derived from the two postulates of Einstien using 'thought' (gedanken) experiments. The two postulates are :

1. The laws of physics have the same form when expressed in any observer

frame - that is to say they are frame invariant. 2. The speed of light is a constant in all frames independently of the motion of

the source. Further consequences of the Lorentz transform are:

a) The dilation of time: If At' is the time interval between two events at the same point (x',y',z') in Σ' , the time interval $\triangle t$ between the two events as it appears to an observer stationary in Σ is given by Δt=YΔt'= (1 - v3/c3) - 1 AH

b) Contraction of length in the direction of motion : If L' is the length of a rod stationary in Σ' and parallel to O'X', the length L as it appears to Σ is given by L=Y-1L'=(1-v2/c2)1/2L. Length measurements perpendicular to

O'X' will remain the same.

Hence $g(x,y) = -x^1y^1 - x^2y^2 - x^3y^3 + x^4y^4$

c) Abandonment of the newtonian concept of a universal time. See Ref. 1 -4

Tensors. The Lorentzian metric g is a bilinear form on two 4 - vectors with $g(x,y) = g_{ii} \times^i y^j$, where $g_{ii} = 0$ for $i \neq j$, $g_{ii} = -1$ for $1 \ge i \ge 3$ and $g_{ij} = +1$.

A 1 - form α will as usual denote a linear function on 4 - vectors, and will be determined by its 4 components $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, so that $\alpha(x) = \alpha_1 x^2$.

We shall say that a 1-form β and a vector γ are physically equivalent if $\beta_1 = g_{ij} \gamma^j$. In standard terminology we say that β is the contravariant equivalent

of y. A 4-vector \mathbf{u} is said to be Lorentz-covariant if with the configuration $\Sigma \Sigma'$ above, $\mathbf{u} \in \mathbf{u}'$ are the vectors as they appear to observer $O \in O'$ respectively, then $\mathbf{u}' = \mathbf{L}_1^{\mathbf{u}'} - \mathbf{i}$, at they satisfy the Lorentz transform rule. Similarly a 1-form is said to be Lorentz contravariant if $a_{-\mathbf{u}'}$ satisfy $a_{-\mathbf{u}'} \mathbf{d}_{-\mathbf{u}'}^{\mathbf{u}}$.

A mixed tensor $T_{j_1...j_k}^{j_1...j_k}$ is said to be Lorentz-convariant if T,T' as the tensor is seen by $\Sigma_{\Sigma}Y$ satisfies

 $T_{q_1...q_i}^{p_1...p_k} - L_{i_1}^{p_1}...L_{i_k}^{p_k} M_{q_1}^{j_1}...M_{q_i}^{j_1} T_{j_1...j_k}^{i_1...i_k}$

By the standard rules of partial differentiation we see from (1) that $\frac{\partial}{\partial x_1} = Y\left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\right) = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_2$

Thus
$$\frac{o}{ox^i} - L \frac{j \cdot o}{j \cdot ox^j}$$
, and $\frac{o}{ox^j} - M \frac{j}{j} \frac{o}{ox^i}$

December 1986

If $x_i = g_{ij}x^j$ is the contravariant equivalent of x, then $\frac{e}{ex_i} = L_j^i e^{ix_j}$

It follows that $\frac{\theta}{\theta x_i}$ is Lorentz-covariant and $\frac{\theta}{\theta x^i}$ Lorentz-contravariant.

Lemma: Let T , k ; k,1≥1, be a mixed Lorentz convariant tensor.

The tensor S = T = T = T = T = T obtained by contraction is also

Lorentz-covariant. In particular if a_i^i, b_i are Lorentz covariant and contravariant respectively, then $a_i^i b_i$ is invariant.

Proof: We prove that $a^ib_i = a^ib_i'$. $a^ib_i' = (L^ia^j)(M^k_ib_i) = L^iM^k_i a^ib_i = c^k_ia^jb_i$, since $M-L^{-1} = a^jb_i$. 50

In particular if ds = dxi denotes a space-time increment.

 $ds^2 = dx^i dx$; is invariant.

If at represent the space-time co-ordinates of a particle moving with velocity v and dto represents a time increment in the frame of the particle then dt2 -(1 - v2/c2)-1 dt.

The laws of Physics

From the foregoing discussion and Einstien's first postulate it is a fair

surmise that the laws of Physics take the form of identities of the form $i_1...i_k=0$, where T is a Lorentz covariant tensor in space-time, for it follows

j,...J, from (4) that T=0 if and only if T'=0.

The generalised conservation principle: In this section we shall assume that matter is composed of almost infinite. simally small discrete particles as is the practice in Chemistry. In a flow of matter,

we shall denote by $\eta(x^i)$ the flow (rate) at x^i . That is at $x^i \mid \eta \mid$ is the number of particles per second crossing a unit area nomal to n. Let d denote the population

density of matter. Taking a small stationary volume v bounded by surface S, the rate of increase of population inside v = - the rate at which the population crosses S.

Hence $\int \eta dS + \frac{e}{e} \int d dv = 0$. Dividing by |v| the volume of v and

making $|v| \rightarrow 0$, we have $\nabla \cdot \eta + \frac{e_d}{et} = 0$ in any frame

We now introduce the notion of the measure of a particle. What we mean by measure depends on the case of interest. In Electrodynamics for instance measure may refer to the charge carried by the particle. In particle dynamics measure may refer to mass.

By Einstein's first postulate physical properties of a particle in a reference frame are independent of the origin and orientation. Thus measure of a particle in particular is a function of the scalar parameters of motion of the particle. If U is the velocity of the particle the measure will be a function of terms such a |U|, |U|, U.U , |U|, etc. We observe from equation (8) where the measure occurs explicitly and from the fact that the Lorentz transform between two frames contains only the instantaneous relative velocity between the two frames, that we may eliminate from measure all terms except | U | . We thus write f(U) for the measure of a particle, Here U= | U | .

Let p refer to the measure density in the given frame. Then p=f(U)d and $\eta=dU=\frac{p}{f(U)}U$. Put J=pU= rate of flow measure. Thus $\eta=\frac{J}{f(U)}$

Subtituting in (5) we have $\nabla \cdot \frac{J}{f(U)} + \frac{a}{at} \frac{p}{f(U)} = 0$ -(6). We shall call f(U) the frame factor. Thus (6) represents a generalised conservation principle valid in any frame.

Now define a 4-vector
$$J^{\hat{i}}$$
 by $(J^1, J^2, J^3, J^4) = (\frac{1}{c} \frac{J}{f(U)}, \frac{p}{f(U)})$

Thus (6) becomes $\frac{\partial J^1}{\partial x^1} = 0$

December 1986

We have seen that $\frac{\mathbf{a}}{\mathbf{a}\mathbf{x}^i} = L_i^j \frac{\mathbf{a}}{\mathbf{a}\mathbf{x}^j}$.

(7) becomes
$$L_i^j = 0 = 0 = 0 = 0$$
 $L_i^j = 0 = 0$

 $= \frac{e}{ex^{j'}} J^{j'} \text{ as (7) is frame independent.}$

 J^{i} can be any 4-vector field with restriction $\underbrace{a\,i}_{0,i}^{j}=0$. By writing the transformation $\underbrace{a\,i}_{0,i}^{j}$ to $J^{i'}$ in the form $J^{i'}=F_{i}(J^{i},\,J^{z},\,J^{z})$ where functions F_{i} , i=1,...A are inde-

Jet J' in the form $J' = F_1(J')$, J^z , J^z , J^z , J^z) where functions F_1 , i=1,...A are independent of J and noting that $J^{i'} \to J^{i'}$ as $v \to 0$, we see without much difficulty that

$$J^{i'}=L^{i}_{p}J^{p}$$
 - (8)
[See Appendix 1]

It follows that J^t is Lorentz-covariant.

In standard texts this same results is obtained by starting with the Lorentz-

In standard texts this same results is obtained by sairing with the Lorentzcovariant 4-velocity $\frac{dx^i}{dx_i}$, where $c^2ds^2 = dx^i dx_i$. See [1].

This frame factor f(U) is now determined by the Physical requirements of the case under consideration. We shall consider two cases.

Case 1. Dynamics (Landau and Lifshitz, 1976; Kompaneyets, 1961):

The motion of a particle, as a generalisation of physical experience, is governed by the principle of least action.

Action S on a particle is an integral with respect to time, and this has the form $S = \int_{-L}^{L_2} L dt$, where L is the Lagrangian. For a particle moving freely, this

integral must not depend on our choice of a reference system and must be invariant under Lorentz transformation.

The only integral of this kind has the form $S = -\alpha$ ds.

Thus
$$S = -\frac{t^2}{\int \infty \sqrt{(1-\frac{v^2}{c^2})}} dt$$
, Hence $L = -\infty \sqrt{(1-v^2/c^2)}$.

We define the mass of a free particle to be
$$\frac{\partial L}{\partial (v^2)} = \frac{1}{2} \frac{\alpha}{c^2} (1 - \frac{v^2}{c^2})^{-\frac{1}{2}} = m$$
.

For v=0,we obtain the rest mass $m_{\varphi}=\frac{1}{2}\frac{\alpha}{c^{2}}$,

Thus
$$m = m_o (1 - v^2/c^2)^{-\frac{1}{2}}$$
 and $\frac{f(v)}{f(0)} = (1 - v^2/c^2)^{-\frac{1}{2}}$.

At this point we note that our present definition of mass his some a long way from the instrumental concept using a spring balance. The definition here is a matter of chioce. In further development of covariant laws of mechanics it will be seen that our concept of mass preserves some of the Newtonian properties while citrying additional ramifications such as identification of mass with energy.

Case 2. Electrodynamics:

If we postulate that the electric charge of a particle is independent of its motion — i. e. invariant, this makes f a constant function.

Thus $\frac{1}{c}J$, p) where J is the current density and p the charge density becomes a Lorentz-covariant 4-vector.

Alternatively we may start with the axiom
$$\frac{aJ}{axi}i = 0$$
 where $J = (\frac{1}{c}J,p)$.

Then $\nabla\cdot J + \frac{a_p}{a_t} = 0 = \nabla\cdot J f(U) + \frac{a_p}{a_t} \rho f(U) = \prod_{f(U)} (\nabla\cdot J + \frac{a_p}{a_t}) + J \cdot \nabla\cdot \prod_{f(U)} + \rho \frac{a_f}{a_t} (\frac{1}{f(U)})$. This tells us that f(U) is constant,

Note: We see that the measurements of mass and electric charge follow two different rules. This choice as has been pointed out is up to a point arbitrary. One consideration important in this choice is to try and maintain the equations of Physics in their pre-relativistic forms.

The standard procedure followed in obtaining relativistic equations of Physics, as was prized out at the end of section I is to extend the classical equations of Physics so that the result becomes an equality between Lorentzcovariant teasors. Thus the Newtonian laws of conservation of momentum and conservation of mass before and after a collision take the form

$$P^{i}=P^{i}$$

 p^i here denotes the covariant 4 momentum (cmu, mc²). The three momentum still retains the classical form mu except that the mass m is now not constant and has the form $m = m_n (1 - u^2/c^2)^{-\frac{1}{2}}$.

p₁⁴=p₂⁴ modifies the conservation of mass into a law of conservation of energy.

We see in the appendix that the postulate of taking charge to be invariant leads to Maxwell's equations in their pre-relativistic form

As far as physical reality in concerned, our Mathematical efforts are in part inspired fiction. We may never be certain that these are in fact true of reality. Testing them means devising experiments in an attempt to falsify them. If they defy attempts at falsification we may treat them as working conjectures,

It is worth pointing out that our notions of mass and electric charge have gone beyond simple instrumental definitions. To find such now may have to be both complicated and indirect. See (Popper, 1975).

Reference

Jackson, J. D. (1963) Classical Electrodynamics, John Wiley,

Kompaneyets, A. S. (1961) Theoretical Physics, Foreign Languages Press, Moscow. Korner, Stephen (1974) The Philosophy of Innovanuel Kant, Pelican.

Landau, L. D. and Lifshitz, E. M. (1975) The Classical Theory of Fields, Pergamon Press,

Landau, L.D. and Lifshitz, E.M. (1976) Mechanics, Pergamon Press.

Panofsky, W. K. H., and Phillips M. (1962) Classical Electricity and Magnetism. Addison Wesley.

Popper, Karl (1963) Confectures and Refutations. Routledge and Kegan Paul.

Popper, Karl (1963) Conlectures and Refutations. Routledge and Kegan Paul. Popper, Karl (1975) An unended Quest, Fontana.

Appendi

 $\frac{\mathbf{e}}{\mathbf{e}\mathbf{x}^{j'}} \quad (\mathbf{L}_{\mathbf{i}}^{\mathbf{j}} \ \mathbf{J}^{\mathbf{j}}) = 0 = \frac{\mathbf{e}}{\mathbf{e}\mathbf{x}^{j'}} \quad (\mathbf{J}^{\mathbf{j}'}) \quad \text{as well} \quad \mathbf{f} \quad \mathbf{f}$

We also have $J^{\hat{i}} \to i^{\hat{i}}$ as $u \to 0$ and $J^{\hat{i}}$ is a vector field with the only restriction that $\frac{\partial J^{\hat{i}}}{\partial u} = 0$ in any frame.

We prove from this that $J^{i'} = L_i^i J^i$

- (3)

54

We first prove a lemma from which the result will easily follow. Lemma: Let J^i be any 4-vector field with the restriction $\frac{eJ^i}{exi} = 0$.

Lemma: Let J^i be any 4-vector field with the restriction $\frac{1}{000} = 0$. Let F^i , i=1,...,4 be a set of functions dependent on u but independent of J^i such that $\frac{1}{000} \left((J^i J^i)^2 J^i J^i \right) = 0$, and

 $\lim_{j \to \infty} F^{j}(J^{1},J^{2},J^{3},J^{4}) = I^{j}. \text{ Then } F^{j}(J^{1},..,J^{4}) = J^{j} \text{ for all } u$

Proof: We have $\mathbf{F}^{i} = \mathbf{J}^{j} = 0$.

Putting $\frac{a)^4}{2} = -\sum_{i=1}^{3} \frac{aj^i}{2} = 0$

Putting $\frac{\partial J^4}{\partial X^4} = -\sum_{i=1}^{\infty} \frac{\partial J}{\partial X^i} = 0$

i=1 oJ oJ oX i=j oJ oX Since (3) does not contain $\frac{oJ^4}{oX^4}$, the quantities $\frac{oJ^3}{oX^4}$ occurring

sidered independent of each other.

This leaves the only possibility.

 $\frac{e^{-i}}{e^{-i}} = 0$ for $i \neq j$ and $\frac{e^{-i}}{e^{-i}} = \frac{e^{-i}}{e^{-i}}$ for all i, j.

motion

This we have $F^i = \alpha J^i + \beta^i$, i=1,...,4.

 $\lim_{u\to 0} F^{i}(J^{1},...,J^{4}) = J^{i} \text{ gives us } a=1 \text{ and } \beta^{i}=0. \quad i=1,...,4.$ (2) easily follows from the lemma

This is seen from the fact that J^1 are functions of J^{1} , ..., $J^{4'}$ (depending also on u). We may thus write $L^1 J^1 = F^1 (J^{1'}, ..., J^{4'})$. Then use (1) and the Lemma to deduce

that $J^{\mu} = L_{\mu}^{\dagger j}$.

The advantage of the method given here is that in seeking out Lorentz covariant devectors we may not always have directly available some related covariant 4-vector on which we can build—as the covariant 4 vectoriy $\frac{dc}{dc}$ in the case of narticle

We give an application for the case of the retarded definitions of A^i in Electrodynamics. Here $(cA,\phi)=A^i$.

We have
$$A^{i}(\underline{r},t) = \frac{1}{4\pi\delta o} \int_{V} Ji \underbrace{\begin{pmatrix} \underline{r}^{i,t-1}\underline{r}-\underline{r}^{i,t} \\ \underline{o} \end{pmatrix}}_{\underline{l}\underline{r}-\underline{r}^{i,t}} dv^{i} \underbrace{\begin{cases} \underline{\sigma}^{i,t-1}\underline{r}-\underline{r}^{i,t} \\ \underline{o} \end{cases}}_{\underline{o}\underline{X}i} dv^{i} \underbrace{\begin{cases} \underline{\sigma}^{i,t-e}\underline{o} \\ \underline{o} \end{cases}}_{\underline{o}\underline{X}i} = \frac{1}{c} \underbrace{\begin{pmatrix} \nabla^{i,t-e}\underline{o} \\ \underline{o} \end{pmatrix}}_{\underline{o}\underline{X}i} = 0$$

Here $J^i = \begin{pmatrix} j \\ c \end{pmatrix}$, P the Lorentz-covariant 4-current.

Putting
$$\underline{r}_{i} = \underline{r} + \underline{s}$$
, $A^{i}(\underline{r}, t) = \frac{1}{4\pi\epsilon_{0}} \int_{0}^{1} J^{i}(\underline{r} + \underline{s}, t - s/c) dv^{i}$

Hence
$$c\left(\nabla \cdot A + \frac{1}{e^2} \cdot \frac{a\phi}{at}\right) = \frac{aA^i}{aX_i}(\underline{r}, t) = \frac{1}{4\pi \mathcal{E}_0} \int_{\underline{a}} \frac{aJ^i}{aX^i}(\underline{r} + \underline{s}, t - \underline{s}/c)$$

$$= \frac{1}{4\pi \mathcal{E}o} \sqrt{\frac{1}{c}} \underbrace{\left(\frac{\nabla \cdot \mathbf{j} + \mathbf{e}\mathbf{p}}{\mathbf{e}\mathbf{t}} \right) \left(\frac{\mathbf{r} + \mathbf{s}, \mathbf{t} - \mathbf{s}/c}{\mathbf{s}} \right)}_{\mathbf{s}} \ dv^t = o.$$

Now J^i are independent except for the restriction $eJ^i = 0$.

We may then suppose A^i to be independent except for the corresponding restriction $\frac{\circ A^i}{\circ \times i} = \circ$.

An application of Lemma 1 tells us that A¹ = (eA, Ø) is Lorentz-convariant.

137282

Received for publication 30 September 1989

137282

The state of the state of the

December 1986

இவ்விதழ் கட்டுரைகளின் சுருக்கங்கள்

பனஞ்சாற்றின் (கள்ளின்) இரசாயனப் பகுப்பு வளியர்கள்:

க. தெய்வேந்திரராஜா, குமுநினி கிறின்ரோப்பர் (தாவரவியம் துறை, யாழ் பல்கரூக்கழகம்) Vingnanam J. Sci 1: 1—7 (1986)

கருக்கம் :-

பின்ஸின் (Borassus flabellifer) ஆண். பென் பந்துணர்களேச் சீவுதலின் மூலம் பெறப்படும் சாறு, இயற்கையாக தொடுப்படையதால் பணம் '' கள் '' பெறப்படும்றது. தொடுப்படையாக நினேவில் இச்சாளுளது 10-16% W/V வெல்லத்தை, முக்கியமாக கட்டு சோக வெல்ல நியேடும் கொண்டுள்ளது. முற்றுக தொடுப்படைந்த பனங்கள்ளில் 5,8 % V/V அற்ககோல் காணப்பட்டதுடன் அக்கள்ளின் pH பெறுமானம் 3.9 ஆகவும் காணப் பட்டது. இயற்கையாக தொடுப்படைந்த கள்வில் உள்ள முக்டிய அமிலம் அசற்றிக் அமிலம் எனக் கண்டறியப்பட்டது. முற்றுக தொடுப்படைந்த கள்ளானது 0.5 % W/V ுமிலத்தன்மையைக் கொண்டிருந்ததுடன் ஒரு இவீற்றர் கள்ளில் 39.575 mg, விற்ற மின் டியும் காணப்பட்டது. பனங்கள்வினிருந்த பெறப்பட்ட வடிடுரவங்கள் வாயடுரவ கிறப்படுவியனிற்கு உட்படுத்தப்பட்டு பகுக்கப்பட்டபோது. இத்தொடுப்பிளுல் உண்டா கும் மிக்ஷக்கிய விள்பொருள் எதிறைக் எனவும் அத்துடன் வேறபட்ட அளவுகளில் மெதிஞல், n - புரோப்பிஞல், சமபியட்டிரேல், சுதைல் அசற்றேற்று, n - ஏமைல் அற்ககோல் என்பவை காணப்படுகின்றன எனவும் அறிமப்பட்டது. இறுடுவில் குறிப்பிடப் பட்ட 3 சேர்வைகளும், முக்கியமாக சுதைல் அசற்றேற்று எனும் எசுத்தர், பகுக்கப் பட்ட எவ்வா மாடுரிகளிலும் காணப்பட்டதால், பணங்கள்ளிலிருந்த பெறப்பட்ட வடி தெரவுள்ளைக்கோளிக்காண அளிக்காவரை மணக்கிற்கு இச்சேர்வைகளே காரவகமாக உள் ளன எனக் கருதலாம்.

NILAPARVATA LUGENS இன் உயிரியல் பற்றிய அவதானங்கள் விரியர்கள்:

G. F. இராஜேந்திரம், D. J. E. டானியல் (விலங்கியல் துறை, பேராதினப் பங்கியல் சழசம், இலங்கை). Vingnanam J. Sci. 1: 8—13 (1986)

*:ngnanam J. Sci. 1: 8-13 (190 *:nåad):

Vol. 1, No. 1

வ இரியர்கள்:

G. F. Флястанці, F. R. Сжантан

(விலந்தியல் துறை யாழ்ப்பாணப் பங்கலேக்கழகம்) Vingnanam J. Sci. 1: 14-18 (1986)

சுருக்கம் :-Cyrtorhinus lividipennis Reuter என்னும் இரைகோளி பூச்சியின் உயிரியம் நன்கு படிக்கப்பட்டது. முட்டையின் சராசரி நீனம் 0.17 mm ஆகவும், அகலம் 0,20mm அகவும். ஒர் ஆன் திறைவடுகியின் நீனம் 2.88 mm அகவும்' அகலம் 0.92 mm ஆகவும், பெண் நிறைவுடலி 2.91 mm நீனமாகவும், 1.04 mm அகமமாகவும் காணப்படுகின்றன. முட்டையின் அடைகாக்கும் காலக்டுன் இடைப்பெறுமானம் 7,36 காட்கனாகவும், முமுக் குடம்பி விருத்திக்காலம் 11,72 நாட்களாகவும் வாணப்படுகின்றன. ஆண் நிறைவுடவி பின் வாழ்வுக்காலம் 16.47 நாட்கனாகவும், பெண்ணில் 11.33 நாட்கனாகவும் உள்ளன. முட்டை இறம் வீதத்தின் இடைப்பெறுமானம் 30.08 முட்டைகள் அர பெண்ணிற்க என்னும் அடிப்படையிலே காணப்பட்டது. இலங்கையில் இச்சனத்தொகையின் வாழ் வுக்காலம் மற்றும் முட்டை இடும் வீதம் என்பன பிலிப்பைன், தாய்லாந்து இனங்களிற் கும், ஹயாய், இத்தியா இனங்களிற்குகிடையான பெறுமானத்தைக் கொண்டிருந்தன.

எலுமிச்சை (CITRUS) தாவரத்தில் காய்ப்பு நோயின் சில தன்மைகள் அடுரியர்கள் :

சோடுசொருபினி நல்லேயா, ஆர். வி. எஸ். சுந்தரேசன் (காவாலியல் அறை, யாழ் பல்சுவேக்கமுகம்)

அ. சிவபாலன்

(உயிகியல்துறை, கயாளு பல்கவேக்கழகம், சுயாளு)

Vingnanam J. Sci. 1: 19-25 (1986)

mondanio t-

எலுயிச்சை தாவரத்டுல் Xanthomonas citri (Hasse) Dowson எனும் பக்றிரியாவால் ஏற்படுத்தப்படும் தொத்றவில் சம்பந்தப்பட்ட காரணிகளேப் பற்றிய சில அடிப்படைத்தக வல்லியப் பெறுவதற்காக தற்போதைய ஆராவ்ச்சி செய்யப்பட்டது. ஏறந்நான 30°Cyū சாரீரப்பதன் 100%முமாகவுள்ள காலநில தொற்றில் ஏற்படுத்துவகற்ற இறப்பான நில்மைகளாக உள்ளன. இத் தோயானது வரட்சியான நில்மைகளிலம் அகே வேள்பில் சாலிப்பான கினேவைகளிலாம் உக்கொரைகள் காணப்படலாம்

இந் நோய்க்குரிய பக்றீரியாவானது கூடுதலாகக் காயந்கலினூடாகவே உட்செல் கின்றது. அத்துடன் செய வேணேகளில் இயற்கையாக அமைந்துள்ள வாழில்களினூடாக வும் இது நடைபெறலாம். ஆப்வு கூடத்தில் பரிசோகண் செல்யம்போன வமமையாகத் தொற்றுதல் ஆனது விருத்தியடைவதற்கு விருமி புருத்தலிலிருந்து ஏறக்குறைய எயு நாட்கள் எடுக்கின்றது. அதே வேளேயில் இயற்கையாகத் கோட்டத்தில் வளகும் தாவரத் திற்கு கிருமி புகுத்தப்பட்டபோது தொற்றுகல் விகக்கியடைவகர்க ஏறக்கைய பறி வெட்டு நாட்கள்வரை எடுக்கின்றது.

அய்வகுடத்தில் வளரும் பக்றீரியாவுக்கு Chloramphenicol, Tetracycline அடுய வண் ணயிர்க்கொள்ளிசனேப் பிரயோகிக்கும்போது இவை 100ppm செறிவிலேயே பக்ரிர்யாவி வுடைய வளர்ச்சியைக் குறைக்கின்றது. Antracol, Streptomycin, Copper Sandoz 1000ppm செறிவிமேயே வளர்ச்சியைத் தடை செய்கின்றன.

தாவரத்திலிருந்து தனிப்படுத்தப்பட்ட இங்களுக்கு தோடியாக நொராயலப் பொருட்களேப் பிரயோகிக்கும்போது Tetracycline 100 ppm செறிவிசெய் தோய்க்கரிய வலில் வி விலக்கியடைவதைக் தடுக்கின்றது. அகே கோக்கில் Chloramphenical. Strontomycin Copper Sandoz, Cupravit a Sumay 1000ppm Gerdidde arrin Garrinderster அறிகறிகள் தோன்றுவதைத் தடுக்கும்.

கத்தரிக்காயில் ஏற்படும் பழஅழுகலின் சில கன்மைகள்

as A Luita in :

December 1986

ஆர். வி. எஸ். சுந்தரேசன், கிவனேஸ்வரி கணககங்காம் (தாவரலியல் துறை, வாழ் பல்கிலக்கழகம்.)

a. Baumpdr.

(உறிரியல்துறை, கயாளு பல்கிலக்கழகம், கயாளு).

monder det

Vinenanam J. Sci. 1: 26-28 (1986)

கத்தித்தாலில் ஏற்படும் பறஅநைக் தோமீன் கிலிரமும், பணவும் பற்றி அராய்ச்சி செய்யப்பட்டவு. இத்தகைய கத்தரிக் காயுடன் சம்பத்தப்பட்ட படுமென பல்கல இனற்கள் கனிப்படுத்தப்பட்டு அடையானங் காணப்பட்டன. இந்தப் பங்கக இனங்களில் 5 இனங்கள் மட்டுமே பழ அழுகவே உண்டாக்குவதற்குப் பொறுப்பானவையாக இருக்கின் றன என இந்தோயைப் பற்றிய படிப்பு தெரியப்படுத்தியது. அவையானை Phoma spp. Botryodiplodia theobromae, Rhizopus spp., Absidia spp. out Fusarium spp. out. @w.fo லும் உண்டாக்கப்பட்ட முக்கியமான நோய்க்குகிய அறிதுறிகள் படிவ செய்யப்பட்டன.

யாம்ப்பாண கடிகிரின் கன்மை

அசியர்: செ. இளங்குமரன்

(தனித புத்திரேபரியம் அறை யாழ்ப்பாணப் பல்கிலக்கழகம்) Vinenanam J. Sci.1, 29-39 (1986)

எருக்கம் :

யாழ்ப்பாண குடாநாட்டின் நிலதிகின் உவரித்தன்மை, கடினத்தன்மை என்ப வற்றிறது செறிவின் போக்கானவு காலக்கொடர் பகப்பு, உத்தேச செய்முறை அய்வு ஆய்ய புள்ளிலிபர முட்பங்களிரும் அராயப்பட்டுள்ளது. இம் ஆப்வுக்கு தெரிவுசெய்யப் பட்ட பேடுக்குமானது அட போகேச கீர்வனச்சபையிலும் பாகுபடுக்கப்பட்ட யாழ்கடா நாட்டின் மேற்குப்பாகமாகும். இப்பிரதேசத்தில் பெறக்கூடிய தொடர்ச்சியான அரணினக் ஈருத்திற் கொண்டு 68 மாடுரிகள் ஆற்கிற்காகத் தெரிவுசெய்யப்பட்டுள்ளன. இக்கரவு கள் 1979-ம் ஆண்டு ஜனவரி மாதத்றிகிருந்து 1384 இரு மாதம்வரை மாதத்தரவு களாகப் பெறப்பட்டுள்ளன. இவ்வாய்விலிருந்து உவர்த்தன்கமபானது பொதுவாக காலப்போக்கில் அடுகரிக்கும் என்பதையும் கடினத்தன்மை இறுபோல் மாழுதன்னமை யும் காட்டப்பட்டுள்ளது.

பனம் நாற்றுக்கள் வளர்ப்பகற்கு ஒரு நவீன முறை அசியர்கள் :

சோ. கந்தையா, கி. மகேத்தேரன் (காவரவியல் கடை யாம் பல்கஙேக்கமகம், இலங்கை)

Vingnanam J. Sci. 1: 40-43 (1986) monasio:

பெற்கை முறைமுகும் பனம் விகைக≫். இலகமில் கையாளக்கூடிய சிலிய கொள்கவன்களில் முறோத்க வைப்பது முறோவளர்ச்சிக்கு இடையற்றைக் கொடுப்பதால் கன்று தாக்கமுறம். விதை அகற்றப்பட்ட பணங்கிழங்குகளேக் குளிருட்டப்பட்ட சூழம் வெப்பரின்விலிகள் 10°C அளவிற்கம் அரிசமான, 35°C அடிப்படை வெப்பரின்பைக் கொடுப்பதன் மூலமும் கிழங்குகள் வேர்விடும் தன்மையைப் பெறுகின்றன. இதினத் தொடர்க்கு வேர்விட்ட கிமற்றகள் சிலிய போலிக்கின் பைகளில் வளர்க்கப்படலாம்.

பனம் பழ சாற்றிலிருந்து மதுசாரம்

as Million de core க. தெம்வேத்திரராஜா, R. குடிடுவி கிறிஸ்ரோயர் (தாவரலியல் துறை, யாழ்ப்பாணப் பல்கவேக் கழகம்)

60

Vingnanam J. Sc. 1: 44-46 (1986) mendanin. ителіватерияци интіни втерен Сыпцита цантт витлійда

பயன்படுத்ப்பட முடியாததாவினும் பண்விலிருந்து பெறப்படுகின்ற வேருரு இனிப்புச்

AMERICAN LINE AT BOLL OF (AMELICAN) CARROL GAT AND CARROL GLOB CARROL லாம். ஐதாக்கப்பட்ட பனம் சாற்றையும் பழச்சாற்றையும் கொடுக்க வைப்பதன்மூலம் பொருளாதார ரீதியாக அதேகமான வெல்லத்தை மதுசாரமாக மாற்றலாம். 6 பர இ கருப் பளி 4 பளு நீர் 2 பள்டு பழச்சாறு கொண்ட ஊடகத்தை கொடுக்க வைக்கதன் மூலம் 5.15% v/v மதுசாரம் பெறப்பட்டது. பழச்சாற்றுக்குப் படுமாக ஒரு பழச்சாற்றுப் பெற்றியான "படைய" சேர்க்கள் நடிய அனவு நகுதாரம் பெறப்பட்டது.

THE FRAME PACTOR - AN APPROACH TO SPECIAL DELATIVITY.

A REVIEW

அதிரியர்: M. R. R. Hoole

(கணிக பவிழியும் அறை பாம்ப்பாணப் பல்கிறக்குமுகல்)

Vingnanam J. Sei. 1:47 - 55 (1986) அருத்தம்:

இப்பத்நிரம், தொடர்பியல் சாரா பௌதிகத்திலுள்ள விரிதோற்றத்திற்கு இட்டுச் செல்லும், எண்கள் சம்பந்தமான காப்ப விலியடன் அரம்பிக்கு, பழைய புலக் கொள்கையிலுள்ள புலக்கணியங்களுக்கு ஒரு உருமாற்று தெறியை (Transformation rule) Garaina Bana

காப்பு விதியில் பின், உணென்றன்க - இஃண மாறிலி - காவிகளுக்கு பொகுந் தமான ஒரு கணிபத்தை (வள்துவை) காணுமுகமாக சட்டம் தொடர்பான வா. காரனி (Frame factor) அறிமுகப்படுத்தப்பட்டுள்ளது. இந்தர் ஏட்டக் காரணி, அது ஏம்மந்தப் பட்ட, சுதிப்பிட்ட புகை கொள்கைக்கு தேவையாவைத்றும் நிர்ணமிக்கப்படும்,

VINGNANAM - JOURNAL OF SCIENCE

Instructions to Contributors

GENERAL

Submission of a manuscript to the editor involves the assurance that it is orginal and that no similar paper, other than an abstract, has been or will be sumitted for publication elsewhere without the consent of the Editorial Board.

Research papers from original investigations and reviews which are critical evaluations of existing knowledge in a specialised field are accepted for editorial consideration. Short communications of sufficient importance to merit publication in advance of a full paper are also accepted by the journal

The language of publication is English. A translation of the abstract in Swahns should be submitted with the mansuscript. Every paper will be referred to at least one referres familiar with the field of research evered by the paper, who will be nominated by the Editorial Board. Papers are edited to increase clarity and ease of communication.

PREPARATION OF MANUSCRIPTS

No restriction is laid on the length of the manuscript, provided it is written clearly and concisely. All unnecessary descriptions, figures and tables must be eliminated. The innecessar form should be used in the text.

The style of setting out, sub-division of text and lay out of tables in the manuscripts should in general be organised in the form adopted in this issue.

Manuscripts should be submitted in triplicate including the original typewritten copy, typed throughout in double spacing on one side of the paper only. Adequate margins (4 cm) should be left with liberal spacing at the top and bottom of each page. The typescript should be free of corrections.

Each page of the manuscript should be numbered in the upper right hand corner of the page. The last page should contain (a) a note as to the number of manscript pages, figures and tables, (b) proposed running title of not more than four words and (c) the name and mailing address of the person to whom the proofs should be sent.

ILLUSTRATIONS

All illustrations are considered as figures and each graph, drawing or photograph should be numbered in sequence with Arabic numerals. Authors must submit the original and two deplicates of each figure. Figures should be planned to fit the proportions of the printed page. The maximum space available on a page is 140 x 190mm. Figures must be drawn in Indian ink on plain white paper or board tracing paper, not larger than twice the linear dimensions desired. Drawings should be lettered with a lettering set, lettering should be kept large enough to be clearly legible after a reduction of 90 to 69%; if this not possible all letters and numeral must be inserted clearly and fightly in blue pencil and not in ink. Wherever possible small figures should be grouped to fill a page.

Each figure should eary a legend so written that the general meaning of each

illustration can be understood without reference to the text. The amount of lettering on drawing should be reduced as far as possible by transferring it to the legand. Figure legends should be typed on a separate sheet and placed at the end of the manuscript.

Grapht should be plotted on white or bluelined graph paper or tracing cloth; grid lines that are to be shown in the engraving should be inked in black. The caption of each axis should be lettered parallel to its axis. Each figure should be identified in the margin with figure number. The preferred position of all illustrations should be indicated in pencil in the manuscript.

PHOTOGRAPHS

Good glossy prints with sharp contrasts between black and white areas should accompany the manuscripts. The size should be such that when the print is reduced to the normal stafe or expediencies (40% x 199 mm ranknum) the detail is still dearn. Magnification should be indicated with a scale line on the photograph. Figure number should be given on the back of each photograph.

TABLES

Tables should not repeat data which are available elsewhere in the paper. Each table should be typed on a sexarate sheet with due regard for the proportions of the principle page. Table should be numbered consecutively with Arabic numerals. Tables should be numbered consecutively with Arabic numerals. Tables should have legends which make their general meaning clear withouther. Tables should have legends which make their general meaning clear withouther than the should have explanatory headings. Units of the text and all table columns should have explanatory headings. Units of the proposed of the proposed presents are in the heading of each column. Vertical as should be not be used who horizontal rules used only in the heading and at the bottomod larger of the base of the sheet the author's name and figure number. The preferred position of tables are to be indicated in oncell in the "namescrie."

REFERENCES

All references to publications made in the text should be presented in a list of references following after the text of the manuscripts. The manuscripts should be carefully checked to ensure that the spelling of authors names and dates are exactly

the same in the text as in the reference list. In the text refer to the author's name (without initial) and year of publication, followed, if necessary, by a short reference to appropriate pages. Es. "Since Peterson (1957) has shown that..." "This is in agreement with results obtained later Kramer, 1959, pp. 12-169". If reference is made in the text to publications written by more than two authors, the name of the first author should be used, followed by "et all.". This indication, however, should never be used in the list of references, where the name of the remark of the publication of the remark of the publication of the remark of the publication of the same author's name, and the following it as author's name in the list is also mentioned with co-authors, the following the should be used. Publications of the same author with one co-sustence and publication dates, publications of the same author with one co-sustence value gystem:

JOURNAL

Selman, I. W. & Kulasegaram, S. (1967). Development of the s'em tuber in Kohlrabi. Journal of Experimental Botany, '18, 471 - 470. Journal name should not be abbreviated.

BOOK

Slatyer, R. O. (1967) Plant Water Relationships Academic Press, London. 366 pp.

SECTIONS OF BOOK Skoog, F. & Miller, C.O. (1957) Chemical regulation of growth and organ

formation in plant tissue cultured in Vitro. pp. 118-131. In Symposia for the Society of Experimental Biology XI. The Biological action of growth substances University Press, Cambridgs.

In referring to a personal communication the two words are followed by the year, e.g. (J. McNary, personal communication, 1968).

CROSS-REFERENCES

The cross reference cannot be finally inserted until the page proof is available.

Type them: "see pige OOO" In the margin pencil the page number of the cross reference in the manuscript.

FORMULAE

Formulae should be typewritten, if possible, leaving ample space around the formulae, Subscripts and superscripts should be set off clearly. Greek letters and other non-leatin or handwritten symbols should be explained in the margin when they are first used. Take special care to clearly show the difference between zero (O) and the letter O, and between non (1) and the letter I. Give the meaning of all symbols immediately after the equation in which they are first used. For simple fractions use the, so filled xyl, finested of a horizontal line.

c. g.:
$$\frac{1}{p}/\frac{2}{m}$$
 rather than $\frac{1}{2}$.

Parentheses and square brackets are preferred in formulae. Accolades should be used only when they are absolutely necessary. Equations should be numbered serially in the right-hand side and in parentheses only equations explicitly referred to in the text need in general be numbered. The use of fractional powers instead of root signs is recommended. Also power of e are often more conveniently denoted by exp. In the chemical formulae, valence of ions should be given as

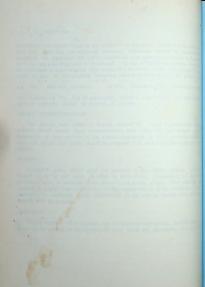
the symbols, e.g. 180. Use of superscripts added to superscripts and subscripts added to subscripts should be avoided, if possible.

SHORT COMMUNICATION

The journal may include a limited number of short communications. Authors should submit short communications only when they believe that rapid publication of their result is of the utmost importance. A short communication must not exceed 1200 words, should be complete in its own right and suitable for citation.

PROOFS

Corrected galley proofs must be returned to the editor without delay, Failure to do so will result in delay in publication. Correction of proofs by authors must be restricted to the printer's and similar errors. They should be marked in peculi. Any modification of the original text is to be avoided. Respossibility for correcting proofs rests entirely on the authors though editorial assistance will be provided.


REPRINTS

Twenty reprints will be supplied free of charge for each article. Additional reprints can be ordered on the reprint order form which will accompany the proofs:

VINGNANAM JOURNAL OF SCIENCE

Volume 1 December 1986 Number

CONTENTS

- Chemical Analysis of Palmyrah Palm (Borassus flabellifer L.) Wine
 ('Toddy') K. THEIVENDIRARAJAH and R. KUMUTHINI
 CHRYSTOPHER ...
- Observations on the Biology of Nilaparvata Iugens (Homoptera ;
 Delphacidae), G.F. RAJENDRAM and DAPHNE J.E. DANIEL
- Observations on the Biology of Cyrtorhinus lividipennis (Hemiptera: Miridae) G.F.RAJENDRAM and FRANCESCA R, DEVARAJAH
- Studies on Xanthomonas citri (Hasse) Dowson, causing Canker Disease of Citrus. SOTHISORUBINI NALLIAH, R.V.S. SUNDARESAN and A. SIVAPALAN ...
- Studies on the fruit rot diseases of Brinjal (Solamun melongena L.).

 R.V.S. SÜNDARESAN, SIVANESWARY KANAGASUNDARAM and A. SIVAPALAN ...
- The Potability of Jaffna Ground Water, CHELLIAH ELANKUMARAN
- A New Method for Culturing Seedlings of Palmyrah Palm (Borassus flabellifer L), S. KANDIAH and S. MAHENDRAN
- Alcohol from Palmyrah Palm (Borassus flabellifer L.) Fruit Pulp.
 K. THELVENDIRARAJAH and R. KUMUTHINI
 CHRYSTOPHER
- The Frame Factor An Approach to Special Relativity: A Review M. R. R. HOOLE

Abstracts in Tamil

Instructions to Contributors